Тепловое реле: принцип работы, виды, схема подключения + регулировка и маркировка

Инструкция по созданию устройства

Схема для создания регулятора температуры своими руками Чтобы изготовить своими руками термореле, нужно придерживаться следующей схемы:

  1. Подготовительные работы. На плате размещают все необходимые элементы и производят пайку. Для этого запрещено использовать кислоту, способную привести к порче мелких деталей. Специалисты рекомендуют применять канифоль.
  2. Протравка дорожек. Выполняют с учетом схемы устройства.
  3. Проверка работоспособности контролера. Для выполнения данной операции применяют тестер.
  4. Проверка работоспособности полупроводников. Измеряют полярность триодов, диодов и прочих элементов.

Перейдем непосредственно к теме. КАК ПОДОБРАТЬ ТЕПЛОВОЕ РЕЛЕ электродвигателя ИЛИ ПРАВИЛЬНАЯ ЗАЩИТА ЭЛЕКТРОДВИГАТЕЛЯ ОТ ПЕРЕГРУЗКИ

Читаем какой номинальный ток двигателя при подключении к сети 380 вольт (Iн).  Этот ток, как мы видим  на шильдике двигателя,  Iн = 1,94 Ампера

Выражение «величина» является условным термином, обозначающим то, какой ток может пропустить через главные рабочие контакты выбранный магнитный пускатель. При присвоении величины считается, что пускатель работает при напряжении 380 В, а его рабочий режим АС-3.

Приведу список различий приборов по их величинам (токи в зависимости от величин):

  • 0 – 6,3 А;
  • 1 – 10 А;
  • 2 – 25 А;
  • 3 – 40 А;
  • 4 – 63 А;
  • 5 – 100 А;
  • 6 – 160 А;
  • 7 – 250 А.

Величины их допустимых токов, протекающих по контактам главной цепи, различаются от тех, что я привел вот по каким принципам:

  • категория использования (она может быть АС-1 -, АС3, АС-4 и еще 8 категорий);
  • первая подразумевает чисто активную нагрузку (или с малым присутствием индуктивности);
  • вторая – для управления моторами, имеющими контактные кольца;
  • третья – работу в режиме прямого запуска движков с ротором короткозамкнутого типа и подключение оных;
  • четвертая — старт моторов, имеющих короткозамкнутый ротор, обесточивание движков, вертящихся медленно, либо недвижимых, торможение методом противотока.

Если увеличивать номер категории использования, то максимальный контактный ток главной цепи (при идентичности параметров коммутационной износостойкости) будет снижаться.

Вернемся к нашим баранам.

Тепловое Реле имеет шкалу, калиброванную в амперах. Обычно шкала соответствует  значению тока уставки (тока несрабатывания реле). Срабатывания реле происходит в пределах 5-20% от превышения тока уставки  потребляемым током электродвигателя. Т.е.

, при перегрузке электродвигателя на 5-20% (1,05*Iн — 1,2*Iн), произойдет срабатывание теплового реле в соответствии с его токовременной характеристикой.

Поэтому выбираем реле таким образом, чтобы ток несрабатывания теплового реле был на 5-10% выше от номинального тока защищаемого электродвигателя (см. таблицу ниже).

Таблица для подбора тепловых реле

0,37РТЛ-10050,6…1РТ 13050,6…1
0,55РТЛ-10060,95…1,6РТ 13061…1,6
0,75РТЛ-10071,5…2,6РТ 13071,6…2,5
1,5РТЛ-10082,4…4РТ 13082,5…4
2,2РТЛ-10103,8…6РТ 13104…6
3РТЛ-10125,5…8РТ 13125,5…8
4РТЛ-10147…10РТ 13147…10
5,5РТЛ-10169,5…14РТ 13169…13
7,5РТЛ-102113…19РТ 132112…18
11РТЛ-102218…25РТ 132217…25
15РТЛ-205323…32РТ 235323…32
18,5РТЛ-205530…41РТ 235528…36
22РТЛ-205738…52РТ 335737…50
25РТЛ-205947…64
30РТЛ-206154…74

Для большинства электродвигателей, произведенных в Китае, мы предлагаем подбирать ток несрабатывания теплового реле равным номинальному.  Подобрав тепловое реле и соответствующий ему магнитный пускатель, настраиваем тепловое реле на нужный нам ток срабатывания.

Если двигатель трехфазный – то умножаем рабочий ток на 1,25- 1,5 – это  и будет уставка теплового реле. 

Устройство и принцип действия теплового реле

Март 17th, 2016 admin

Тепловое реле – это аппарат защиты, отключающий электродвигатели при длительных перегрузках, а также при обрыве одной из фаз от сети. Тепловое реле, как правило, устанавливается после магнитного пускателя, для того, чтобы обесточить электродвигатель, отключая питание с катушки магнитного пускателя своим размыкающим контактом в цепях управления.

Чаще всего на предприятиях используются тепловые реле серии ТРЛ, РТЛ, РТТ и другие. В этой статье рассмотрим устройство и принцип действия реле РТТ-111 УХЛ 4, которое используется с магнитными пускателями серии ПМЕ.

Технические характеристики теплового реле РТТ-111 УХЛ4

-номинальный ток теплового расцепителя – 10 А;

-напряжение силовой цепи – 220 В, 400 В, 660 В;

-один нормально замкнутый контакт 95-96;

-уставка тока срабатывания от 5,35 А до 7,35 А.

Устройство и принцип действия теплового реле

Тепловые реле устроены аналогично друг другу и состоят из следующих основных деталей. Главным чувствительным элементом является биметаллическая пластина, состоящая из двух металлов: сплавов железа с никелем и латуни, соединенных пайкой и имеющих разные по величине коэффициенты линейного теплового расширения. Этот коэффициент характеризует то, насколько может удлиняться, в данном случае, металлическая пластина при ее нагревании. Для сравнения, коэффициент линейного теплового расширения латуни составляет 18,7 () по сравнению с сплавом железа и никеля 1,5 (), поэтому при нагреве латунь будет быстрее увеличиваться в длине, изгибая, тем самым, биметаллическую пластину в свою сторону. Это свойство и используется в тепловом реле!

1-корпус теплового реле;

2-биметаллическая пластина с нагревательным элементом;

5-пружина замыкающего контакта;

6-винт регулировки пластины температурного компенсатора;

7- пластина температурного компенсатора;

9-эксцентрик с движком уставки тока срабатывания;

10- кнопка возврата реле в рабочее состояние.

По закону Джоуля-Ленца электрический ток, протекающий по проводнику вызывает его нагрев, то есть часть электрической энергии уходит на тепловые потери. И чем больше по значению сила тока в проводника одного и того же поперечного сечения, тем больше он нагревается (перегрузка). Но в тепловых реле биметаллическая пластина нагревается непосредственно от нагревательного элемента-проводника, по которому протекает электрический ток к электродвигателю. Нагретая и изогнутая биметаллическая пластина воздействует через толкатель на исполнительную пластину температурного компенсатора, которая, в свою очередь, выводит из зацепления замкнутые контакты в цепи катушки магнитного пускателя и кнопку включения реле в рабочее состояние(наиболее наглядно изображено на этом рисунке).

Так как на работу теплового реле влияет температура окружающей среды (дополнительный нагрев), то в качестве «противовеса» используется также биметаллическая пластина температурного компенсатора, которая изгибается в противоположную сторону и регулируется специальным винтом.

На эксцентрике или регуляторе тока срабатывания есть шкала с 5 делениями влево(уменьшение тока) и с 5 делениями вправо (увеличение тока) от начальной риски. Ток срабатывания регулируется путем изменения зазора между толкателем и исполнительной пластиной с помощью воздействия движка эксцентрика на пластину температурного компенсатора.

При обрыве питания одной из фаз трехфазного электродвигателя нагрузка переходит на две другие фазы, что приводит к возрастанию в них электрического тока, нагреву обмоток и срабатыванию, в итоге, теплового реле- защита от неполнофазного режима!

Рекомендации:

-при срабатывании теплового реле, необходимо дать время для остывания тепловому расцепителю и обязательно найти причину его срабатывания (произвести тщательный осмотр электродигателя);

— в зависимости от температурных условий эксплуатации электродвигателей советую регулировать эксцентрик влево или вправо;

-периодически производить технический осмотр и ремонт теплового реле во избежание преждевременного выхода из строя!

Спасибо за внимание!

Общее описание устройства

Термостат отключает нагревательный прибор при достижении определенной температуры Температурное реле или термостат является основной деталью, которая управляет функционированием бытовых приборов отопления. Также он входит в конструкцию водонагревателей и вентиляторов, климатической техники.

Термореле (термостат) – это блок управления отопительной или охлаждающей системой, выполняющий конкретные задачи:

  • Экономия ресурсов. Котел или другая подобная техника с терморегулятором потребляет меньше электричества или газа. Реле отключает прибор, как только температура воздуха в помещении достигла нужного значения.
  • Повышение комфорта. При наличии реле для контроля температуры не нужно следить за работой котла.
  • Обеспечение безопасности. Термореле на включение/выключение оповещает пользователя о перегреве оборудования.

Разновидности приборов

Механический терморегулятор с выносным датчиком На рынке встречаются термореле с разным внешним видом, конструкционными особенностями и характеристиками. В зависимости от способа монтажа подобные устройства бывают стационарными и розеточными (переносными). Первая разновидность термореле устанавливается непосредственно в стену. Переносные варианты имеют возможность быстрого подключения, что привлекает многих пользователей.

По месту расположения датчиков выделяют:

  • термореле с выносным датчиком температуры;
  • агрегаты со встроенным датчиком.

В первом случае датчик размещают на конце кабеля, отходящего от температурного реле. Его длина может быть разной – от 10-20 см до нескольких метров.

Преимуществом устройства называют то, что их чувствительные элементы разрешается устанавливать на улице, в погребе и различных подсобных помещениях. Во время работы таких контролеров практически исключены ошибки. Единственным недостатком реле с выносным датчиком называют появление сбоев при исчезновении электричества.

Механические варианты

Подобные датчики температуры и реле считаются самыми доступными и простыми в использовании. Они работают благодаря присутствию в конструктивной схеме биметаллической пластинки. Отключение и настройка рабочих параметров устройства осуществляется при помощи рычага и поворотного колеса.

Недостатком механических моделей называют сложность их монтажа. Они устанавливаются в углубление в стене и напрямую подключаются к сети.

Электронные модели

Электронный регулятор температуры со встроенным датчиком Популярностью пользуются и электронные термореле и датчики. Они точнее измеряют климатические параметры помещения благодаря наличию в составе конструкции полупроводниковых деталей, работающих от тока 24 В. Подобные устройства могут подключаться напрямую к электрической сети или применяются батарейки.

Электронное термореле оснащено монитором. Это облегчает выполнение настройки устройства, оповещает пользователя о результатах последнего замера климатических параметров.

Область применения

Термореле на 12 вольт часто входит в состав конструктивной схемы систем отопления. Пользователю необходимо контролировать температуру в котле и контурах с учетом климатических показателей помещения. Также устройство позволяет регулировать объем воды в системе. При наличии температурного реле удается своевременно выявить любые неисправности в работе котла.

В конструкции бытовых обогревателей также могут присутствовать термостаты, включаемые через розетку. Такие устройства просты в использовании и подключении, универсальны и высокоэффективны. Подобные термореле совместимы с электрическими чайниками, нагревательными приборами, светотехникой.

Термореле для теплого пола

Схема установки термореле для теплого пола Существуют специальные контролеры, предназначенные для регулировки работы системы «теплый пол». Они подсоединяются к нескольким деталям – датчикам, нагревательным элементам и электросети. После включения термореле получает информацию о температурных показателях системы, после чего сравнивает их с заданными пользователем настройками.

При необходимости контролер включает или отключает нагревательные элементы, делая это циклично. Поэтому теплый пол без трудностей обеспечивает в помещении стабильную температуру воздуха.

Для инфракрасных обогревателей

Приборы получили большое распространение из-за способности передавать тепловую энергию на значительные площади. При установке термостата удастся повысить эффективность работы таких устройств. Используя программируемые накладное термореле, легко настроить функционирование инфракрасного обогревателя на длительный период времени.

Для сауны и бани

Рекомендуется использовать контролеры, способные работать при температуре от +50°С. С их помощью функционирование сауны или бани будет происходить автономно с учетом параметров, заданных пользователем.

Процесс подключения

Ниже приведена схема подключения ТР с обозначениями. На ней можно найти сокращение КК1.1. Оно обозначает контакт, который в нормальном состоянии является замкнутым. Силовые контакты, через которые ток поступает на двигатель обозначены сокращением KK1. Автоматический выключатель, который находится в ТР обозначен как QF1. При его задействовании происходит подача питания по фазам. Фаза 1 управляется отдельной клавишей, которая обозначена маркировкой SB1. Она выполняет аварийную ручную остановку в случае возникновения непредвиденной ситуации. От нее контакту уходит на клавишу, которая обеспечивает пуск и обозначена сокращением SB2. Дополнительный контакт, который отходит от клавиши пуска, находится в дежурном состоянии. Когда выполняется запуск, тогда ток от фазы через контакт поступает на магнитный пускатель через катушку, которая обозначается KM1. Происходит срабатывание пускателя. При этом те контакты, которые в нормальном положении являются разомкнутыми замыкаются и наоборот.

Когда замыкаются контакты, которые на схеме находятся под сокращением KM1, тогда происходит включение трех фаз, которые пускают ток через тепловое реле на обмотки двигателя, который включается в работу. Если сила тока будет расти, тогда из-за воздействия контактных площадок ТР под сокращением KK1 произойдет размыкание трех фаз и пускатель обесточивается, а соответственно останавливается и двигатель. Обычная остановка потребителя в принудительном режиме происходит посредством воздействия на клавишу SB1. Она разрывает первую фазу, которая прекратит подачу напряжения на пускатель и его контакты разомкнутся. Ниже на фото можно увидеть импровизированную схему подключения.

Есть еще одна возможная схема подключения этого ТР. Разница заключается в том, что контакт реле, который в нормальном состоянии является замкнутым при срабатывании разрывает не фазу, а ноль, который уходит на пускатель. Ее применяют чаще всего в силу экономичности при выполнении монтажных работ. В процессе нулевой контакт подводится к ТР, а с другого контакта монтируется перемычка на катушку, которая запускает контактор. При срабатывании защиты происходит размыкание нулевого провода, что приводит к отключению контактора и двигателя.

Реле может быть смонтировано в схему, где предусмотрено реверсивное движение двигателя. От схемы, которая была приведена выше различие заключается в том, что присутствует НЗ контакт, в реле, которое обозначено KK1.1.

Если реле срабатывает, тогда происходит разрыв нулевого провода контактами под обозначением KK1.1. Пускатель обесточивается и прекращает питания двигателя. В экстренной ситуации кнопка SB1 поможет быстро разорвать цепь питания, чтобы остановить двигатель. Видео о подключении ТР можно посмотреть ниже.

Схемы подключения

Подключение вышеперечисленных моделей тепловых реле может производиться по нескольким схемам, отличающихся в зависимости от конкретного типа оборудования. Рассмотрим наиболее актуальные из них.

Рис. 5. Схема включения теплового реле

Как видите на рисунке 5, трехфазное реле RT1 подключается последовательно к двигателю M. Питание к ним подается через контактор KM. В нормальном режиме работы контакты RT1 нормально замкнуты и через катушку КМ протекает ток. Как только возникнет аварийный режим, тепловая защита разомкнет контакты и катушка контактора обесточится, питание двигателя прекратиться.

Аналогичным образом происходит включение двухполюсного реле, с той разницей, что контакты защитного устройства включаются последовательно только в две фазы из трех, как показано на рисунке ниже:

Рис. 6. Схема включения двухполюсного реле

Помимо этого существует схема включения теплового реле для мощных электродвигателей, рабочий ток которых в разы превышает допустимый предел для защитного приспособления. В таких ситуациях используется трансформаторное преобразование, а схема включения выглядит следующим образом:

Рис. 7. Схема трансформаторного включения

Основные характеристики

Каждое ТР имеет индивидуальные технические характеристики (ТХ). Реле нужно выбирать согласно характеристикам по нагрузке и условиям применения при работе электродвигателя или другого потребителя электроэнергии:

  1. Значение Iн.
  2. Диапазон регулировки I срабатывания.
  3. Напряжение.
  4. Дополнительное управление работой ТР.
  5. Мощность.
  6. Граница срабатывания.
  7. Чувствительность к фазному перекосу.
  8. Класс отключения.

Номинальное значение тока — значение I, на которое рассчитано ТР. Выбирается по значению Iн потребителя, к которому непосредственно подключается. Кроме того, нужно выбирать с запасом по Iн и руководствоваться следующей формулой: Iнр = 1.5 * Iнд, где Iнр — Iн ТР, который должен быть больше номинального тока двигателя (Iнд) в 1.5 раза.

Граница регулировки I срабатывания является одним из важных параметров устройства термозащиты. Обозначение этого параметра является диапазоном регулировки значения Iн. Напряжение — значение силового напряжения, на которое рассчитаны контакты реле; при превышении допустимой величины произойдет выход из строя устройства.

Некоторые виды реле снабжены отдельными контактами для управления работой устройства и потребителя. Мощность — это один из основных параметров ТР, которое определяет выходную мощность подключенного потребителя или группы потребителей.

Граница срабатывания или порог срабатывания является коэффициентом, зависящим от номинального тока. В основном его значение находится в диапазоне от 1,1 до 1,5.

Чувствительность к фазному перекосу (асимметрии фаз) показывает процентное соотношение фазы с перекосом к фазе, по которой протекает номинальный ток необходимой величины.

Класс отключения — параметр, представляющий среднее время срабатывания ТР в зависимости от кратности тока уставки.

Основной характеристикой, по которой нужно выбирать ТР, является зависимость времени срабатывания от тока нагрузки.

Что такое тепловое реле для электродвигателя

Прибором под названием тепловое реле (ТР) называют ряд устройств, разработанных для защиты электромеханических машин (двигателей) и аккумуляторных батарей от перегрева при токовых перегрузках. Также реле этого типа присутствуют в электрических цепях, осуществляющих контроль температурного режима на стадии выполнения разных технологических операций в производстве и схемах нагревательных элементов.

Базовым компонентом, встроенным в тепловое реле, является группа металлических пластин, части которых имеют разный коэффициент теплового расширения (биметалл). Механическая часть представлена подвижной системой, связанной с электрическими контактами защиты. Электротепловое реле обычно идет вместе с магнитным пускателем и автоматом защиты.

Особенности выбора теплового реле

Выбор ТР должен начинаться с изучения инструкции. Технический документ аппарата содержит следующую информацию:

  • связь тока нагрузки и периода срабатывания;
  • состояние для старта – охлаждение или перегрев;
  • номинальная нагрузка электромотора – оптимальный показатель перегрузки составляет 20-30 %;
  • время постоянной нагрузки – от 5 до 10 мин;
  • период продолжительной нагрузки – от 40 мин до 1 часа;
  • зависимость нагревания пластины от температуры воздуха.

Релейные приборы теплового типа характеризуются высокой скоростью и большим диапазоном срабатывания. Их легко устанавливать самостоятельно. Для обеспечения своевременного выключения двигателя в случае перегрузки ТР настраивается на специальном стенде.

Виды реле тепловой защиты

Существует несколько видов реле для защиты электрических двигателей от обрыва фаз и токовых перегрузок. Все они отличаются конструкционными особенностями, типом используемых МП и применением в разных моторах.

ТРП. Однополюсный коммутационный аппарат с комбинированной системой нагрева. Предназначен для защиты асинхронных трехфазных электромоторов от токовых перегрузок. Применяется ТРП в электросетях постоянного тока с базисным напряжением в условиях нормальной работы не больше 440 В. Отличается устойчивостью к вибрациям и ударам.

РТЛ. Обеспечивают двигателям защиту в таких случаях:

  • при выпадении одной из трех фаз;
  • асимметрии токов и перегрузок;
  • затянутого пуска;
  • заклинивания исполнительного механизма.

Их можно устанавливать с клеммами КРЛ отдельно от магнитных пускателей или монтировать непосредственно на ПМЛ. Устанавливаются на рейках стандартного типа, класс защиты – IP20.

РТТ. Защищают асинхронные трехфазные машины с короткозамкнутым ротором от затянутого старта механизма, длительных перегрузок и асимметрии, то есть перекоса фаз.

РТТ могут быть использованы в качестве комплектующих частей в различных схемах управления электроприводами, а также для интеграции в пускатели серии ПМА

ТРН. Двухфазные коммутаторы, которые контролируют пуск электроустановки и режим работы мотора. Практически не зависят от температуры внешней среды, имеют только систему ручного возврата контактов в начальное состояние. Их можно использовать в сетях постоянного тока.

РТИ. Электрические переключающие аппараты с постоянным, хоть и небольшим потреблением электроэнергии. Монтируются на контакторах серии КМИ. Работают вместе с предохранителями/автоматическими выключателями.

Твердотельные токовые реле. Представляют собой небольшие электронные устройства на три фазы, в конструкции которых нет подвижных частей.

Функционируют по принципу вычисления средних значений температур двигателя, осуществляя для этого постоянный мониторинг рабочего и пускового тока. Отличаются невосприимчивостью к изменениям в окружающей среде, а потому используются во взрывоопасных зонах.

РТК. Пусковые коммутаторы для контроля температуры в корпусе электрооборудования. Используются в схемах автоматики, где тепловые реле выступают в качестве комплектующих деталей.

Чтобы обеспечить надежную работу электрооборудования, релейный элемент должен обладать такими качествами, как чувствительность и быстродействие, а также селективность

Важно помнить, что ни один вид из выше рассмотренных приборов не является пригодным для защиты цепей от короткого замыкания. Устройства тепловой защиты лишь предотвращают аварийные режимы, которые возникают при нештатной работе механизма или перегрузке

Устройства тепловой защиты лишь предотвращают аварийные режимы, которые возникают при нештатной работе механизма или перегрузке.

Электрооборудование может перегореть еще до начала срабатывания реле. Для комплексной защиты их нужно дополнять предохранителями или компактными автоматическими выключателями модульной конструкции.

Подключение и установка ТР

Как правило, современные тепловые реле имеют защиту по всем трем фазам, в отличие от распространенных в советское время тепловых реле, имеющих обозначения ТРН, где контроль тока производился только в двух проводах, идущих к электродвигателю.

Тепловое реле ТРН с контролем тока только в двух фазах

По типу подключения тепловые реле можно разделить на две разновидности:

  • Устанавливаемые рядом с магнитным пускателем, и подключаемые при помощи перемычек (ТРН, РТТ).Реле РТТ, подключенное при помощи жестких пластинчатых перемычек
  • Монтируемые непосредственно на контактор магнитного пускателя (современные модели).Реле устанавливается непосредственно на контакторе

Входные токопроводящие выводы в современных моделях одновременно служат частью крепежа теплового реле к контактору магнитного пускателя. Они вставляются в выходные клеммы контактора.

Подключение теплового реле к контактору

Как видно из фото внизу, в некоторых пределах можно изменять расстояние между выводами, чтобы подстраиваться под различные виды контакторов.

Подстройка выводов под клеммы контактора

Для дополнительной фиксации ТР предусмотрены соответствующие выступы на самом устройстве и на контакторе.

Элемент крепежа на корпусе теплового релеСпециальный паз крепления на контакторе

Механика теплового реле

Существует много разновидностей ТР, но принцип действия у них одинаков – при протекании увеличенного тока через биметаллические пластины они искривляются и воздействуют через систему рычагов на спусковой механизм контактных групп.

Рассмотрим для примера устройство теплового реле LR2 D1314 фирмы «Schneider Electric».

ТР в разобранном виде

Условно данное устройство можно разделить на две части: блок биметаллических пластин и система рычагов с контактными группами. Биметаллические пластины состоят из двух полос различных сплавов, соединенных в одну конструкцию, имеющих разный тепловой коэффициент расширения.

Изгибающаяся биметаллическая пластина

Благодаря неравномерному расширению при больших значениях тока данная конструкция расширяется неравномерно, что заставляет ее изгибаться. При этом один конец пластины зафиксирован неподвижно, а подвижная часть воздействует на систему рычагов.

Система рычагов

Если убрать рычаги, то будут видны контактные группы теплового реле.

Коммутационный узел ТР

Не рекомендуется сразу же включать тепловое реле после срабатывания и заново запускать электродвигатель – пластинам нужно время, чтобы остыть и вернуться в первоначальное состояние. К тому же, будет благоразумней сначала найти причину срабатывания защиты.

Поделитесь в социальных сетях:FacebookTwitterВКонтакте
Напишите комментарий