Шаг 2: Выбор аккумуляторов
Все солнечные панели являются источниками постоянного тока. Электроэнергию они генерируют только днем. Если есть желание подключить нагрузку постоянного тока днем, то с этим нет никаких проблем, можно подключиться непосредственно от панелей. Но сделать это – не самое хорошее решение, потому что:
- Большинству приборов необходимо постоянное номинальное напряжение для эффективной работы. Передаваемое солнечными панелями напряжение и ток непостоянны. Они меняются в зависимости от интенсивности солнечного света, пасмурная погода – «не есть хорошо».
- Если вы хотите включить что-то ночью, то это что-то попросту не включится.
Указанная проблема решается использованием аккумуляторов, для накопления энергии в дневное время, и использования её в ночное. Существует много видов аккумуляторов. Аккумуляторы «открытого типа» с жидким электролитом, к которым относятся автомобильные аккумуляторы – предназначены для выдачи высокого тока в течение небольшого промежутка времени. Они не предназначены для глубокого разряда, у них задачи другие. Аккумуляторы для солнечных батарей являются аккумуляторами глубокого цикла, они легко переносят частичные разряды и предназначены для глубокого медленного разряда. Для солнечных электростанций хорошо подходят гелевые и литиевые аккумуляторные батареи (о том какие аккумуляторы лучше для солнечных электростанций мы писали тут).
Принцип работы солнечной батареи
Система работает посредством фотоэлектрических преобразователей, которые соединяются в определенной последовательности. Каждый фотопреобразователь состоит из двух кремниевых пластин, которые отличаются типом проводности. Одна покрыта фосфором, в результате чего здесь происходит образование избытка отрицательно заряженных электронов. Другая пластина покрыта бором, что приводит к образованию, отсутствующих в слое отрицательных зарядов, частиц, так называемых «дырок».
Принцип работы неисчерпаемого источника альтернативной энергии заключается в следующем: солнечный свет попадает на отрицательно заряженную панель, что приводит к активному образованию дополнительных «дырок» и электронов. На панели, покрытой фосфором, присутствует электрическое поле, благодаря которому появляется разность потенциалов. Положительно заряженные частицы устремляются в верхний слой, а отрицательно заряженные направляются в нижний. Создается постоянное напряжение. Получается, что один преобразователь работает как батарейка. В цепи возникает постоянный ток, когда к нему присоединяется нагрузка. Каждая батарея покрыта тонкими медными жилками, отводящими ток и направляющими его по назначению.
Сила тока зависит от определенных параметров:
- размера фотопреобразователя;
- уровня инсоляции;
- типа фотоэлемента;
- общего сопротивления приборов, которые подключены к солнечной панели.
Схема подключения и работы солнечной станции
Как самостоятельно сделать солнечную батарею
Конечно, фотоэлементы самостоятельно сделать нельзя, их надо покупать. И остальные компоненты батареи продаются в магазинах электроники. Но сборка батареи из готовых компонентов заводского изготовления вполне доступна умелому самодельщику, знакомому с основами электротехники.
Инструменты
Для работы потребуются паяльник, оловянный легкоплавкий припой, ножовка по металлу, острый нож, отвёртки, плоскогубцы. Необходимы измерительные приборы – мультиметр или по отдельности вольтметр, амперметр, омметр.
Рабочий чертёж
Рабочие чертежи в совокупности составляют комплект рабочей документации. В их составе должны быть чертежи конструкции, собранной из фрагментов, и общая электрическая схема всей солнечной батареи, состоящей из нескольких крупных самостоятельных устройств. В проект должно быть включено техническое описание всего устройства, инструкция по эксплуатации и способы устранения некоторых типичных неисправностей.
Подборка компонентов
Для создания солнечной батареи необходимо иметь следующее:
- силикатные пластины — фотоэлементы;
- листы ДСП, алюминиевые уголки и рейки для создания конструктива (основного каркаса);
- жёсткий поролон толщиной 1,5–2,5 см;
- прозрачный элемент, выполняющий роль основания для кремниевых пластин;
- эпоксидный компаунд или заменяющий его силиконовый герметик для наружных работ;
- шурупы, саморезы;
- электрические провода, диоды, клеммы;
- рамку – выполняет роль основного каркаса, в котором располагается вся солнечная батарея. Состоит из основания – ДСП, USB, фанеры и прочих металлических или деревянных планок, уголков и саморезов для их соединения;
- аккумуляторную батарею, которая является накопителем сгенерированной в светлое время суток электрической энергии с целью её дальнейшего использования;
- инвертор – служит для преобразования постоянного напряжения в переменное, которое нужно для подключения к солнечной батарее любых бытовых приборов.
Инструкция по изготовлению
Создание солнечной батареи для многих людей, даже специалистов в технике, является делом незнакомым и непривычным. Особенно это относится к сборке больших солнечных панелей из сравнительно малых по размерам фотоэлементов. Поэтому необходимо тщательно изучить инструкции, пообщаться со специалистами и (желательно) немного потренироваться.
Объединение нескольких отдельных пластин
Отдельные фотоэлементы необходимо собрать в укрупнённые панели. Их раскладывают на столе рядом, между ними создают зазор примерно в 5 мм для температурного расширения отдельных элементов и проводами спаивают соответствующе схеме клеммы. Припой на основе олова, низкотемпературный, рекомендуется ПОС-61. Паяльник мощностью не более 45 Вт, но ещё лучше использовать паяльную станцию.
ФОТО: avatars.mds.yandex.netСборка панели из фотоэлементов
Изготовление рамы и защитного экрана
Рама является основанием солнечной панели. Может быть собрана с маленькими бортами из пластика, дерева или металлического профиля. В днище короба сверлятся отверстия диаметром 10 мм для притока охлаждающего панель воздуха. В короб укладывается демпфирующий лист поролона, а на него – панель спаянных фотоэлементов. Для защиты фотоэлементов от атмосферных осадков они накрываются прозрачным стеклом.
Сборка компонентов
Когда рама с уложенными фотоэлементами и защитным стеклом готова, следует проверить её работоспособность. Надо вынести сборку на солнце и подключить измерительные приборы. Если сборка фотоэлементов заработает, можно начинать сборку солнечной батареи из составляющих её компонентов. Структура солнечной батареи показана на рисунке.
ФОТО: avatars.mds.yandex.netСтруктурная схема солнечной батареи на даче
Классификация фотоэлектрических модулей
Сегодня производство солнечных батарей идёт двумя параллельными путями. С одной стороны на рынке присутствуют фотоэлектрические модули, созданные на основе кремния, а с другой — плёночные, созданные с использованием редкоземельных элементов, современных полимеров и органических полупроводников.
Популярные сегодня кремниевые фотоэлементы подразделяются на несколько типов:
- монокристаллические;
- поликристаллические;
- аморфные.
Для использования в самодельных солнечных батареях лучше всего использовать модули из поликристаллического кремния. Хоть КПД последних и ниже, чем у монокристаллических элементов, но зато на их работоспособность не так сильно влияет загрязнённость поверхности, низкая облачность или угол падения солнечных лучей.
Что же касается батарей из аморфного кремния, то они ещё менее зависимы от погодных условий и за счёт своей гибкости практически не подвержены риску повреждений при сборке. Тем не менее использование их в собственных целях ограничивается как достаточно низкой удельной мощностью на 1 квадратный метр поверхности, так и по причине высокой стоимости.
Кремниевые солнечные элементы представляют собой самый распространённый класс электрических фотопластин, поэтому они чаще всего используются для изготовления самодельных устройств
Появление плёночных фотоэлектрических модулей обусловлено как необходимостью в снижении стоимости солнечных батарей, так и потребностью получить более производительные и долговечные системы. Сегодня промышленность осваивает выпуск тонких гелиоэлектрических модулей на основе:
- теллурида кадмия с КПД до 12% и стоимостью 1 Вт на 20–30% ниже, чем у монокристаллов;
- селенида меди и индия — КПД 15–20%;
- полимерных соединений — толщина до 100 нм, с КПД — до 6%.
О возможности использования плёночных модулей для постройки электрической солнечной станции своими руками говорить пока ещё рано. Несмотря на доступную стоимость, изготовлением теллуридо-кадмиевых, полимерных и меде-индиевых фотоэлементов занимаются лишь отдельные компании.
Такие достоинства плёночных фотоэлементов, как высокий КПД и механическая прочность позволяют с полной уверенностью говорить, что за ними — будущее солнечной энергетики
Хоть в продаже и можно найти батареи, созданные по плёночной технологии, в большинстве своём они представлены в виде готовых изделий. Нам же интересны отдельные модули, из которых можно построить недорогую самодельную солнечную панель — на рынке они пока ещё в дефиците.
Сводные данные по КПД солнечных элементов, которые выпускаются промышленностью, представлены в таблице.
Таблица: КПД современных солнечных батарей
Тип фотоэлемента | Коэффициент полезного действия, % |
Монокристаллический кремний | от 17 до 22 |
Поликристаллический кремний | от 12 до 18 |
Аморфный кремний | от 5 до 6 |
Теллуридо-кадмиевые | от 10 до 12 |
На основе селенида меди-индия | от 15 до 20 |
Полимерный | от 5 до 6 |
Расчет и проектирование
Для расчетов солнечной батареи, собранной дома, обязательно потребуется перечень всех электроприборов и оборудования, имеющихся в доме. Сразу же нужно выяснить потребляемую мощность каждого из них.
Данные о мощности указываются в маркировке или в техническом паспорте устройства. Их значения довольно приблизительные, поэтому для панели, работающей с инвертором нужно ввести поправку, то есть среднее энергопотребление умножается на поправочный коэффициент. Полученная таким образом общая мощность дополнительно умножается на 1,2, учитывая потери при работе инвертора. Мощные приборы при запуске потребляют ток, в несколько раз превышающий номинальный. В связи с этим, инвертор также должен в течение короткого времени выдерживать двойную или тройную мощность.
Если мощных потребителей довольно много, но одновременно они практически не включаются, то применяемый в системе инвертор с большим выходным током получится слишком дорогим. При отсутствии значительных нагрузок рекомендуется использовать менее мощные недорогие приборы.
Солнечная батарея в домашних условиях рассчитывается по времени работы каждого электроприбора в течение суток. Вычисленное опытным путем, значение умножается на мощность, и в результате получается суточное энергопотребление, измеряемое в киловатт-часах.
Обязательно понадобятся сведения с местной метеостанции о количестве солнечной энергии, которую можно реально получить в этой местности. Расчет данного показателя выполняется на основе показаний среднегодовой солнечной радиации и ее среднемесячных значений при самой плохой погоде. Последняя цифра позволяет определить минимальное количество электроэнергии, достаточное для решения текущих задач.
Получив исходные данные можно приступать к определению мощности одного фотоэлемента. Вначале показатель солнечной радиации нужно разделить на 1000, в результате, получаются так называемые пикочасы. В это время интенсивность солнечного свечения составляет 1000 Вт/м2.
Формула для расчета
Количество энергии W, вырабатываемое одним модулем, определяется по следующей формуле: W = k*Pw*E/1000, в которой Е – величина солнечной инсоляции за определенный период времени, k – коэффициент, составляющий летом – 0,5, зимой – 0,7, Pw – мощность одного модуля. Поправочный коэффициент учитывает потери мощности фотоэлементов при нагревании солнечными лучами, а также изменение наклона лучей относительно поверхности в течение дня. Зимой элементы нагреваются меньше, поэтому и значение коэффициента будет выше.
Учитывая суммарную мощность энергопотребления и данные, полученные с помощью формулы, рассчитывается общая мощность фотоэлементов. Полученный результат делится на мощность 1 элемента и в итоге будет требуемое количество модулей.
Существуют различные модели с целым рядов мощностей элементов – от 50 до 150 Вт и выше. Выбирая компоненты с необходимыми показателями, можно собрать солнечную панель с заданной мощностью. Например, если потребность в электроэнергии составляет 90 Вт, то необходимы два модуля по 50 Вт каждый. По такой схеме можно создать любую комбинацию из имеющихся фотоэлементов. В любом случае расчеты следует производить с некоторым запасом.
Количество фотоэлементов оказывает влияние на выбор емкости аккумуляторной батареи, поскольку именно они создают зарядный ток. Если мощность панели 100 Вт, то минимальная емкость АКБ должна быть 60 А*ч. С возрастанием мощности панелей потребуются и более мощные аккумуляторы.
Сборка конструкции
Солнечная панель своими руками собирается в несколько этапов. Лучше всего делать работу по порядку, чтобы ничего не упустить и добиться хорошего результата.
Изготовление каркаса
Алюминиевый каркас – идеальное решение.
Основа под будущие фотоэлементы должна быть прочной и долговечной, ее можно делать из разных материалов. Можно использовать влагостойкую фанеру или плиты ОСП, работа в этом случае проводится так:
Вырезаются куски подходящего размера, по периметру делается обрамление из деревянного бруска, важно точно подогнать все части друг к другу, чтобы не было щелей, а стыки и соединения промазать атмосферостойким герметиком. Затем поверхность покрывается защитным составом или краской и оставляется до полного высыхания
Лучше нанести покрытие в несколько слоев.
Используйте алюминиевый каркас, так как он намного прочнее и долговечнее, чем деревянный. В этом случае подбираются уголки и соединяются, чтобы получилась прочная рама. В нее ставится оргстекло или другой прозрачный материал, все стыки надо обработать герметиком, чтобы не было щелей. Продолжать работу можно после того, как состав полностью высохнет, излишки можно срезать строительным ножом.
Кстати! Размеры каркаса подбираются под параметры приобретенных фотоэлементов. Пока их нет, рамы лучше не делать.
Пайка проводов и соединение фотоэлементов
На всех модулях есть контакты, имеющие разную полярность, перед началом работы они протираются спиртом, после чего к ним припаиваются проводники. Только потом их можно объединить между собой, чтобы собрать систему. Если проводники уже припаяны, обязательно проверяются все соединения, нередко там есть брак, который надо исправить перед монтажом. Если используются специальные шины, то инструкция по проведению работы такая:
- Шины нужно нарезать на полоски подходящего размера, если они идут в одном листе. Контакты на пластинах обязательно протираются спиртом для обезжиривания, после чего на них аккуратно наносится небольшой слой флюса.
Шину следует приложить к контакту по всей длине, после чего разогретым паяльником нужно провести по поверхности без нажима, чтобы не испортить панель. После остывания элемент переворачивается и работа повторяется на контакте со второй стороны в том же порядке.
- Чтобы правильно разместить соединения и подобрать подходящую длину, предварительно разложите модули на подготовленном основании и разметьте их положение.
- Подготовить солнечный элемент своими руками не так сложно. После того, как контакты прикреплены, модули ставятся на место и соединяются между собой. Главное – следить за соблюдением полярности.
Если на соединении шины с контактом есть неровности, надо провести по поверхности паяльником еще раз.
Нанесение герметика
В домашних условиях проще всего использовать строительные атмосферостойкие составы, которые продают во всех магазинах. Работа проводится так:
Вначале надо нанести капли состава по краям фотоэлементов через небольшое расстояние. После этого они размещаются на прозрачном основании по меткам, нанесенным ранее
Важно ровно выставить модули и прижать их как можно плотнее к поверхности.
Для фиксации в подходящем положении на места нанесения герметика ставятся любые грузы. Их можно снять после высыхания состава.
Далее необходимо покрыть герметиком все края, а также стыки между элементами, чтобы полностью герметизировать их
При этом важно не попадать на рабочие части.
Сборка панели
Когда герметик высох, можно проводить окончательную сборку. Тут могут быть свои особенности в зависимости от системы, но чаще всего процесс выглядит так:
- В первую очередь в боковой части корпуса крепится разъем для подключения, к которому надо присоединить диоды Шоттки.
- На наружную сторону вырезается экран из прозрачного материала, который лучше всего закрепить на герметике, чтобы обеспечить герметичность конструкции и исключить попадание влаги внутрь.
- Готовый элемент проверяется на работоспособность. Если все нормально, можно ставить на каркас крепления, чтобы установить батарею в подготовленном месте.
Как собрать солнечную батарею своими руками
Сборка корпуса солнечной батареи
Сборка солнечных батарей, а именно, корпуса может выполняться в разных вариантах. В первом случае ее можно сделать из фанерных листов и деревянных реек, поэтому такой монтаж не представляет особой сложности. Конструкции выпиливаются по размерам, а затем соединяются между собой саморезами. Все стыки и швы предварительно промазываются герметиком. Все деревянные части покрываются краской или специальными защитными составами. Дальнейшие работы проводятся только после полного высыхания конструкции.
Немного сложнее изготовить солнечную батарею из алюминиевого уголка. В этом случае сборка каркаса происходит в следующем порядке:
- Сборка из уголка прямоугольного каркаса.
- В каждом углу конструкции сверлятся отверстия под крепления.
- Внутренняя часть профиля по всему периметру покрывается силиконовым герметиком.
- Внутрь каркаса на обработанные места укладывается текстолит или оргстекло, вырезанные по размеру. Их нужно как можно плотнее прижать к уголкам.
- Внутри корпуса лист прозрачного материала фиксируется крепежными уголками, установленными по углам.
- Дальнейшие работы проводятся после полного высыхания герметика. Предварительно, все внутренние поверхности протираются от пыли и загрязнений.
Пайка проводов и соединение фотоэлементов
Все элементы для солнечных батарей отличаются повышенной хрупкостью и требуют аккуратного обращения. Перед началом пайки они протираются, чтобы поверхность была идеально чистой. Элементы с припаянными проводниками все равно следует проверить и устранить обнаруженные недостатки.
На каждой фотопластинке имеются контакты с различной полярностью. Вначале проводники припаиваются к ним, а уже потом соединяются между собой.
При использовании шин вместо проводов, необходимо учитывать следующие особенности:
- Шины размечаются и разрезаются на требуемое количество полосок.
- Контакты пластин протираются спиртом, после чего на них наносится тонкий слой флюса, с одной стороны.
- Шина прикладывается по всей длине контакта, после чего по ней нужно провести разогретым паяльником.
- Пластина переворачивается, и такая же операция повторяется на другой стороне.
Паяльник во время монтажа нельзя сильно прижимать к пластине, иначе она может лопнуть. На лицевой стороне после пайки не должно оставаться неровностей. Если они остались, нужно еще раз пройти паяльником по шву.
Чтобы не ошибиться с размещением пластин, перед тем как их собирать, на поверхность листа рекомендуется нанести разметку с учетом всех размеров и зазоров. После этого фотоэлементы укладываются на свои места. Затем контакты панелей соединяются между собой с обязательным соблюдением полярности.
Нанесение герметизирующего слоя
Перед тем как самому герметизировать конструкцию, нужно выполнить тестирование и проверить солнечные батареи на работоспособность. Она выносится на солнце, после чего на выводах шин замеряется напряжение. Если оно в пределах нормы, можно приступать к нанесению герметика.
Один из наиболее подходящих вариантов предполагает следующие действия:
- Силиконовый герметик наносится на самодельные солнечные батареи капельками по краям корпуса и между пластинами. После этого края фотоэлементов аккуратно прижимаются к прозрачному основанию и должны прилегать к нему как можно плотнее.
- На каждый край пластинок укладывается небольшой груз, после чего герметик полностью высыхает, а фотоэлементы надежно фиксируются.
- В самом конце аккуратно промазываются края рамки и все стыки между пластинами. На данном этапе герметиком покрывается все, кроме самих пластинок, он не должен попасть на их оборотную сторону.
Окончательная сборка солнечной панели
После всех операций остается лишь полностью собрать солнечную батарею в домашних условиях.
В этом случае порядок действий будет следующий:
- В боковой части корпуса устанавливается соединительный разъем, к которому подключаются диоды Шоттки.
- С лицевой стороны вся сборка пластинок солнечной батареи закрывается прозрачным защитным экраном и герметизируется, чтобы исключить попадание влаги внутрь конструкции.
- Для обработки лицевой стороны рекомендуется использовать специальный лак, например, PLASTIK-71.
- После сборки выполняется окончательная проверка, после чего солнечная батарея из подручных средств сделанная своими руками может устанавливаться на свое место.
Как сделать солнечную батарею своими руками
Повер банк с солнечной батареей
Обзор солнечных батарей для туристов
Установка солнечных батарей
Солнечные батареи: альтернативная энергия
Производство солнечных батарей
Шаг 1: Расчет нагрузки
Прежде, чем выбрать компоненты, необходимо рассчитать нагрузку приборов, которые будут подключаться к вашей солнечной электростанции и сколько времени они будут работать. Для этого нужно сделать следующее:
- Определите, какую технику (освещение, вентилятор, телевизор, насос и т.д.) вы будете подключать, и сколько времени (часов) она будет работать;
- Ознакомьтесь со спецификациями ваших приборов для определения их мощности;
- Рассчитайте величину потребляемого электричества в Ватт-часах (Вт*ч), которая равна произведению номинальной мощности ваших приборов (Вт) на время работы (ч).
Например Вы хотите включить какой-то прибор мощностью 10 ватт на 5 часов от солнечной панели. Количество потребленной электроэнергии будет: 10Вт х 5ч = 50Вт*ч. Таким же образом необходимо рассчитать общую величину потребляемой энергии, а именно рассчитать для каждого прибора и сложить полученные величины.
Пример: настольная лампа = 10Вт х 5ч = 50 Вт*ч + вентилятор = 50Вт х 2ч = 100Вт*ч, телевизор = 50Вт х 2ч = 100 Вт*ч, всего = 50 + 100 + 100 = 250 Вт*ч.
Когда закончите расчет нагрузки, пора приступать к выбору компонентов в соответствии с вашим требованием нагрузки.
Разновидности солнечных элементов
Фотоэлектрические преобразователи – это небольшие панельки со стороной от 38 до 156 мм. Для более-менее нормальной мощности вам понадобится не менее 35-50 элементов. Они могут быть как с припаянными проводниками, так и без них. Второй случай доставит больше хлопот с паяльником.
Панели очень хрупкие. Продавцы придумывают разные способы уберечь их от трещин и царапин во время доставки. Но даже такие меры не всегда спасают элементы. В процессе работы шанс повредить элементы еще больше: если их согнуть, они могут лопнуть, если сложить стопкой – поцарапать одна другую. Незначительные сколы не сильно повлияют на мощность.
На рынке есть два самых популярных типа фотоэлементов:
- поликристаллические;
- монокристаллические.
Поликристаллические имеют срок эксплуатации порядка 20 лет. Они достаточно эффективны в сложных погодных условиях. КПД – 7-9%. Монокристаллические преобразователи более долговечны (около 30 лет) и имеют больший КПД (13%). Однако они слишком чувствительны к плохой погоде: если солнце закрыто облаками или лучи падают не под прямым углом, эффективность существенно падает.
Виды солнечных элементов
Определение солнечной батареи
Конструктивно солнечная батарея представляет собой схему преобразователя одного вида энергии в другой. В частности, энергия света преобразуется в электрическую энергию. Причём результатом преобразования становится электрический ток постоянной величины.
Активными элементами конструкции солнечной панели выступают полупроводники, обладающие свойствами фотохимического синтеза. Например, кремний (Si), применением которого были отмечены самые первые исследования в области получения электричества солнца.
Простейший набор из солнечной панели и автомобильного аккумулятора уже составляет конструкцию настоящей домашней энергетической установки
На текущий момент кремний уже не рассматривается безальтернативным химическим элементом, опираясь на который есть смысл сооружать солнечные батареи из панелей, в том числе своими руками.
Более перспективными и эффективными теперь видятся другие представители таблицы Менделеева (в скобках цифры энергетической отдачи):
- Арсенид галлия GaAs (кристаллический 25,1).
- Фосфит индия InP ( 21,9).
- Фосфат индия с галлием + Арсенид галлия + Германий GaInP + GaAs + Ge (32).
Рассматривать солнечную панель глазами обывателя следует как пластину полупроводника (кремния и т.п.), каждая из сторон которой является положительным и отрицательным электродом.
Под влиянием света солнца, в результате химического фотосинтеза, на электродах панели образуются электрические потенциалы. Казалось бы, всё просто. Остаётся только подключить провода к нагрузке и пользоваться электричеством. Но на деле всё несколько иначе.
Отапливаем дом солнечной энергией
Если про реальную возможность обеспечить бытовые электроприборы «солнечным» током уже говорилось выше, то для обогрева жилья солнечной энергией существуют два варианта. И чтобы использовать солнечные батареи для отопления дома, нужно знать некоторые требования, обязательные для выполнения этой задачи.
Конечно, для отопления можно использовать и солнечные панели, но в этом случае нужно будет согласиться с тем, что на нагревание воды в бойлере с помощью ТЭНов потребуется львиная доля генерируемой батареями энергии. Простые расчеты показывают, что для нагревания бойлером 100 литров воды до 70–80 ⁰С требуется порядка 4 часов. За это время водяной котел с нагревателями на 2 кВт мощности потребит около 8 кВт. Если солнечные батареи в суммарной мощности смогут вырабатывать до 5 кВт в час, то проблем с энергообеспечением в доме не будет. Но если солнечные панели имеют площадь меньше 10 кв. метров, то такие мощности для полноценного обеспечения электрической энергией не подойдут.
Использование вакуумного коллектора для отопления дома оправдано в том случае, когда это полноценный жилой дом. Схема работы такой гелиосистемы обеспечивает теплом все жилище в течение круглого года.
Дополнительные устройства для эксплуатации
Важной особенностью солнечной батареи является сильная зависимость ее выходного напряжения и максимального тока от освещенности. Сделав своими руками батарею с расчетным напряжением в 12В, можно будет обнаружить, что ее реальное напряжение будет колебаться от 9В при слабом и косо падающем свете до 18-19В при ярком прямом освещении
Напрямую подключать солнечную батарею к аккумулятору нельзя – это может привести к перезаряду и выкипанию электролита, если используется свинцово-кислотный аккумулятор. Для герметичных гелевых аккумуляторов перезаряд еще более страшен и приводит к необратимому повреждению.
Во избежание перезаряда аккумуляторных батарей используются специальные контроллеры заряда. Наиболее простые схемы просто отключают аккумулятор по мере набора заряда, а сама зарядка идет лишь тогда, когда напряжение на солнечной батарее выше, чем на аккумуляторе (так называемая схема On-Off). По соображениям безопасности отключение зарядки происходит заведомо раньше полного набора емкости, в среднем на 70 процентах. Более совершенные зарядные устройства на основе ШИМ (широтно-импульсной модуляции, также PWM от Pulse Width Modulation) поддерживают заряд аккумулятора практически на 100%, переходя по мере набора емкости в импульсный режим. Самые сложные и дорогие контроллеры MPPT (Maximum Power Point Tracking, отслеживание точки максимальной мощности) также отслеживают и состояние самой батареи, включая ее температуру, для обеспечения максимального КПД.
Китайские контроллеры заряда производства фирм наподобие EP Solar обойдутся недорого по сравнению с самой солнечной батареей: блок 12В/5А стоит около 1100 р., более мощные и совершенные американские блоки Morningstar имеют цену от 8 тысяч рублей.
Но подобное устройство можно собрать и самостоятельно при наличии соответствующих навыков в радиоэлектронике. Ниже приведена простая схема повышающего контроллера, способного обеспечивать заряд аккумулятора от шестивольтовой солнечной батареи:
Для подстройки максимального напряжения на выходе служит подстроечный резистор R2.
Для солнечных батарей, рассчитанных на 12В, можно использовать следующую схему:
Здесь MainLoad– разъем для подключения аккумулятора, AuxLoad– для дополнительной нагрузки, требующей ограничения напряжения (например, зарядное устройство телефона). Достоинство этой схемы – возможность ее использования с различными типами аккумуляторов, определяемыми положением переключателя:
- 1.Обслуживаемый свинцово-кислотный аккумулятор
- 2.Необслуживаемый аккумулятор
- 3.Батарея литиевых аккумуляторов (3 аккумулятора по 4,1 В)
Солнечная батарея из транзисторов
Чтобы изготовить преобразователь световой энергии потребуется следующее:
- Транзистор типа П 210
- Пассатижи
- Точило
- Алюминиевое донышко от банки из-под пива или газ воды.
- Небольшой кусок ДВП для установки транзисторов.
Способ создания
Для начала потребуется снять верхнюю часть транзистора. Это нужно для того чтобы был виден фотоэлемент, реагирующий на свет. Чтобы добраться до нужного нам элемента потребуется применить пассатижи и точило.
В итоге получим такой вот элемент:
Выводы «база» и «эмиттер» дают напряжение 0,95 вольт.
Теперь придется поработать с дном баночки. Из него сделаем отражатель или рефлектор.
Главное, чтобы транзистор не выступал за бортик.
В центре крышки нужно просверлить или пробить отверстие под транзистор.
После всех этих манипуляций закрепляем наш фотоэлемент в углублении.
Теперь нужно проделать отверстия в ДВП. Оно должно совпадать с параметрами транзистора. Размер деревянного прямоугольника должен быть таким чтобы вошло 7 донышек банок.
Транзисторы и отражатели крепим дереву термо клеем.
После этого соединяем наши фото элементы друг с другом последовательно. Используем выводы «база/коллектор.
После сборки наша установка выдает около 0,60 вольт.
Сила тока = 2,8 мА.
Если подобрать транзисторы получше, то можно выжать больше энергии из этой штуковины. Указанные в статье можно встретить за 40 р. За 280 рублей можно собрать своими руками маломощную солнечную панель.
Солнечная батарея из сд дисков
Для создания потребуется:
- Специальный светодиод прямоугольной формы.
- Компакт диск.
- Специальная крышка блокирующая утечку солнечной энергии.
- Болт.
- Пару проводов.
Процесс создания
Первым делом выполняем работу с крышкой. В ней нужно проколоть отверстие. Это можно сделать аккуратно ножницами, гвоздем или шилом.
Далее вкручиваем шуруп в пробку.
После этого берем CD диск и кладем его на крышку. Затем все закручиваем.
В итоге у нас появилась готовая цельная конструкция усиливающая и концентрирующая солнечный свет.
Теперь чтобы получить электричество перенаправляем луч солнца на светодиод. В итоге генерируется около 5 вольт энергии.
Таким образом если это запаковать в нехитрую конструкцию можно получать нужное количество электричества. Затраты при этом будут самые минимальные.
Сборка
При первой сборке лучше воспользоваться заготовленной разметочной подложкой, помогающей расположить ровно элементы друг от друга. Основу выполняем из фанеры с обязательным маркированием уголков конструкции. После пайки на элемент батареи с обратной стороны крепим кусок ленты для монтажа, и таким образом их переносим. Герметизации подвергаются исключительно соединительные части.
Дальнейшие действия выглядят следующим образом:
- Выложите элементы на поверхность стекла.
- Между элементами оставьте расстояние и прижмите их грузами.
- Пайку сделайте по электрической схеме, то есть «Плюсовые» дорожки размещаются на лицевой стороне, а «минусовые» дорожки — на обратной стороне.
- Аккуратно припаяйте серебряные контакты.
- Соедините по этому принципу все элементы. В крайних элементах контакты выводят на шину «плюс» и «минус».
Рекомендуется также поставить «среднюю» точку, с двумя дополнительными шунтирующими диодами. Клемму устанавливают с внешней стороны нашей рамы. В качестве выводящих проводов можно использовать акустический кабель в изоляции. Все провода прочно фиксируются силиконом.
Грамотная конструкция системы позволит обеспечить необходимую мощность батареи. При расчете конструкции учитывают, что для изготовления одной солнечной батареи всегда берут солнечные модули только одного размера, так как в системе максимальный ток ограничен током самого малого элемента.
Стандартные расчеты показывают, что в солнечный день получают с 1 метра панели около 120 Вт мощности. Конечно, такая мощность не даст необходимого напряжения даже для компьютера. Но уже панель в 10 метров даст 1 кВт энергии и обеспечит энергией работу основных приборов дома: светильников, телевизора, холодильника и компьютера. Для обычной семьи из 4 человек необходимо в месяц около 300 кВт, поэтому система, установленная оптимально с южной стороны, размером 20 метров обеспечит семейные потребности в электроэнергии
С целью оптимизации потребления энергии для освещения важно использовать в доме лампочки переменного тока — светодиодные и люминесцентные
Заключение
Из диодов, конечно же, сложно собрать мощную панель для улавливания солнечного света. Ведь даже в своем самом лучшем исполнении (старые диоды) такое устройство будет малоэффективным и от него максимум можно будет запитать небольшой светодиодный прибор. Поэтому если вы не электротехник-любитель и всякого рода электросхемы – не ваша страсть и вы не особо любите с ними возиться, то не стоит тратить силы на сборку подобных батарей, а лучше купить заводскую модель и получать на выходе хороший результат. В такой ситуации вы гораздо быстрее окупите затраченные средства, да и с большим комфортом.