Как сделать индукционный нагреватель своими руками из сварочного инвертора

Сборка и монтаж системы

Подключать индуктор к клеммам сварочного аппарата, предназначенным для подсоединения сварочных кабелей, нельзя. Если это сделать, то агрегат просто выйдет из строя. Чтобы приспособить инвертор под работу с индукционным нагревателем, потребуется достаточно сложная переделка аппарата, требующая, в первую очередь, знаний в радиоэлектронике.

В двух словах, эта переделка выглядит так: катушку, а именно ее первичную обмотку, требуется подсоединить после преобразователя высокой частоты инвертора вместо встроенной индукционной катушки последнего. Кроме этого, потребуется удалить диодный мост и спаять конденсаторный блок.

Как происходит переделка сварочного инвертора в индукционный нагреватель, можно узнать из этого видео.

Индукционная печь для металла

Чтобы сделать индукционный нагреватель из сварочного инвертора, потребуются следующие материалы.

  1. Инверторный сварочный аппарат. Хорошо, если в агрегате будет реализована функция плавной регулировки тока.
  2. Медная трубка диаметром около 8 мм и длиной, достаточной, чтобы сделать 7 витков вокруг заготовки 4-5 см в диаметре. Кроме этого, после витков должны остаться свободные концы трубки длиной около 25 см.

Для сборки печи выполните следующие действия.

  1. Подберите какую-либо деталь диаметром 4-5 см, которая будет служить шаблоном для наматывания катушки из медной трубки. Это может быть деревянная круглая деталь, металлическая или пластиковая труба.
  2. Возьмите медную трубку и заклепайте один ее конец молотком.
  3. Плотно заполните трубку сухим песком и заклепайте второй ее конец. Песок не даст трубке сломаться при скручивании.
  4. Сделайте 7 витков трубки вокруг шаблона, после чего спилите ее концы и высыпьте песок.
  5. Подсоедините получившуюся катушку к переделанному инвертору.

Индукционный нагреватель для воды

Для сборки отопительного котла потребуются следующие конструктивные элементы.

  1. Инвертор. Аппарат выбирается такой мощности, какая нужна для отопительного котла.
  2. Толстостенная труба (пластиковая), можно марки PN Ее длина должна быть 40-50 см. Сквозь нее будет проходить теплоноситель (вода). Внутренний диаметр трубы должен быть не меньше 5 см. В таком случае наружный диаметр будет равняться 7,5 см. Если внутренний диаметр будет меньше, то и производительность котла буде невысокой.
  3. Стальная проволока. Также можно взять пруток из металла диаметром 6-7 мм. Из проволоки или прутка нарезаются небольшие куски (4-5 мм). Эти отрезки будут выполнять роль теплообменника (сердечника) индуктора. Вместо стальных отрезков можно использовать цельнометаллическую трубку меньшего диаметра или стальной шнек.
  4. Палочки или стержни из текстолита, на которые будет наматываться индукционная катушка. Применение текстолита убережет трубу от нагретой катушки, поскольку данный материал устойчив к высоким температурам.
  5. Изолированный кабель сечением 1,5 мм 2 и длиной 10-10,5 метров. Изоляция кабеля должна быть волокнистой, эмалевой, стекловолоконной или асбестовой.

Индукционная сварка: принцип работы

Нагреватель такого типа можно создать, имея определенные детали.

Чаще всего в его конструктивные узлы входят:

  1. Индуктор, который изготавливается из необходимого количества медной проволоки. Именно она будет обеспечивать своего рода магнитное поле.
  2. Элемент да нагрева. Чаще всего он изготавливается из медной трубы, которая находится внутри каждого индуктора.
  3. Генератора. Он будет преобразовывать энергию бытового типа в качественный ток.

Все эти компоненты взаимодействуют между собой и работают по принципу нагревателя индукционного типа.

Индукционный нагреватель в свою очередь представляет 4 важных момента:

  • Генератор, который будет вырабатывать ток, и передавать его на медную кадушку;
  • Индуктор, принимающий ток, будет создавать электромагнитное поле;
  • Элемент для нагрева будет разогреваться под воздействием потока, и создавать векторные перемены;
  • Теплоноситель в процессе разогрева будет передавать свою энергию прямо в отопительную систему.

Такое действие индукционного агрегата дает ряд преимуществ.

Шаг 3: Драйвер

Эта схема действительно большая. Вообще, вы можете прочитать про простой маломощный инвертор. Если вам нужна большая мощность, вам нужен соответствующий драйвер. Этот драйвер будет останавливаться на резонансной частоте самостоятельно. После того, как ваш металл расплавится, он останется заблокированным на правильной частоте без необходимости какой-либо регулировки.

Если вы когда-либо строили простой индукционный нагреватель с чипом PLL, вы, вероятно, помните процесс настройки частоты, чтобы металл нагревался. Вы наблюдали за движением волны на осциллографе и корректировали частоту синхронизации, чтобы поддерживать эту идеальную точку. Больше не придется этого делать.

В этой схеме используется микропроцессор Arduino для отслеживания разности фаз между напряжением инвертора и емкостью конденсатора. Используя эту фазу, он вычисляет правильную частоту с использованием алгоритма «C».

Я проведу вас по цепи:

Сигнал емкости конденсатора находится слева от LM6172. Это высокоскоростной инвертор, который преобразует сигнал в красивую, чистую квадратную волну. Затем этот сигнал изолируется с помощью оптического изолятора FOD3180. Эти изоляторы являются ключевыми!

Далее сигнал поступает в PLL через вход PCAin. Он сравнивается с сигналом на PCBin, который управляет инвертором через VCOout. Ардуино тщательно контролирует тактовую частоту PLL, используя 1024-битный импульсно-модулированный сигнал. Двухступенчатый RC-фильтр преобразует сигнал PWM в простое аналоговое напряжение, которое входит в VCOin.

Как Ардуино знает, что делать? Магия? Догадки? Нет. Он получает информацию о разности фаз PCA и PCB от PC1out. R10 и R11 ограничивают напряжение в пределах 5 напряжений для Ардуино, а двухступенчатый RC-фильтр очищает сигнал от любого шума. Нам нужны сильные и чистые сигналы, потому что мы не хотим платить больше денег за дорогие мосфеты после того, как они взорвутся от шумных входов.

Подключение к индуктору

Вначале следует сказать о конструкции самого индуктора. Его рекомендуется сделать в виде цилиндрической катушки, намотанной в один ряд медным проводом. Витки должны быть изолированы друг от друга.

Рекомендуемое число витков – от 80 до 100. Сечение провода обычно составляет 2,5 – 4 мм2. В качестве сердечника можно использовать саму трубу отопления, но практические опыты показали, что вода при этом греется слабо. Поэтому была опробована другая конструкция сердечника.

Для более интенсивного нагрева теплоносителя в качестве сердечника предложено использовать отрезок пластиковой трубы, заполненный обрезками стальной проволоки, диаметром 5 – 6 мм.

При такой схеме происходит индукционный нагрев проволоки, обтекаемой теплоносителем. За счет увеличения площади теплообмена вода нагревается значительно интенсивней. Участок трубы с проволокой следует ограничить стальными сетками с обеих сторон, во избежание попадания обрезков в систему отопления.

Что касается собственно подключения сварочного инвертора, то рекомендации тех, кто сделал индукционный нагреватель своими руками, несколько неоднородны.

Так, часть советов сводится к изготовлению дополнительного промежуточного трансформатора, во вторичную обмотку которого включается индуктор с конденсатором.

Другая часть мастеров просто наматывают один виток медного провода на тороидальный высокочастотный трансформатор сварочного инвертора и напрямую к нему подключают индуктор.

В любом случае, не следует использовать выводы + и — сварочного инвертора, с которых осуществляется сварка. Напряжение на них выпрямленное, с наложенными высокочастотными пульсациями. Постоянная составляющая сварочного напряжения просто перегреет индуктор, не создавая рабочего поля.

Принцип работы в системе водяного отопления

Источником рабочего электромагнитного поля индукционного нагревателя служит индуктор, представляющий собой катушку из проводникового материала. Индуктор индукционного нагревателя подключен к источнику переменного тока высокой частоты. Внутрь катушки, где поле наиболее интенсивно, помещается металлический предмет, служащий магнитным сердечником.

Под воздействием поля индуктора в толще стального сердечника происходит намагничивание зерен структуры металла (доменов). Вектор магнитной индукции каждого домена изменяет своё направление с частотой внешнего поля. В результате индуцируются так называемые вихревые токи, быстро разогревающие металл сердечника.

Теперь представим, что роль сердечника играет стальная труба отопления, по которой движется теплоноситель. Получая энергию в результате индукционного нагрева, труба отдает тепло циркулирующей жидкости. Так происходит разогрев системы водяного отопления.

Принцип работы индукционного нагрева и устройство индукционных печей


Индукционная печь из сварочного аппарата по своему устройству очень схожа с бытовыми индукционными печами, да и принципы, на которых основывается работа этих устройств, во многом схожи. В основе работы устройства положен принцип электромагнитной индукции. В силовое поле, образуемое вокруг проводника, по которому течет электрический ток, помещается металлический сердечник. В результате действий электрического тока образуется электромагнитное поле, которое воздействует на кристаллическую решетку сердечника. Под действием поля возникают вихревые токи, которые и создают нагрев сердечника до температуры плавления.Преимущества такой индукционной печи заключается:

в скоротечном равномерном нагреве металла помещенного в спираль катушки;
в специфической направленности нагрева – греется только металл, помещенный в установку, а не все оборудование;
при плавке получается однородный металл без вкрапления примесей и добавок;
нагрев происходит настолько быстро, что специальные добавки не успевают испаряться

К слову это очень важно при работе с ценными металлами, например, при плавке золота или золотосодержащих сплавов.. Однако, конструкция не может обойтись без источника питания, способного выдавать ток нужных параметров и к тому же снабженного устройствами защиты от перегрева и короткого замыкания

Так что для изготовления печи используется сварочный аппарат как источник питания и изготовленный своими руками индуктор из медной трубки

Однако, конструкция не может обойтись без источника питания, способного выдавать ток нужных параметров и к тому же снабженного устройствами защиты от перегрева и короткого замыкания. Так что для изготовления печи используется сварочный аппарат как источник питания и изготовленный своими руками индуктор из медной трубки.

Принцип работы

Работа всех электронагревателей, как обычных, так и индукционных, основана на одном и том же принципе: при пропускании электрического тока через некий проводник последний начнет нагреваться.

Количество выделяемого за единицу времени тепла зависит от силы тока и величины сопротивления данного проводника – чем больше эти показатели, тем сильнее будет греться материал.

Весь вопрос в том, каким образом вызвать протекание электротока? Можно подсоединить проводник непосредственно к источнику электрической энергии, что мы и делаем, втыкая в розетку шнур от электрочайника, масляного обогревателя или, к примеру, бойлера. Но можно применить и другой способ: как оказалось, протекание электротока можно спровоцировать воздействием на проводник переменного (именно переменного!) магнитного поля. Это явление, открытое в 1831-м году М. Фарадеем, получило название электромагнитной индукции.

Тут есть одна хитрость: магнитное поле может быть и постоянным, но тогда положение находящегося в нем проводника нужно постоянно менять. При этом будет меняться количество проходящих через проводник силовых линий и их направление относительно него. Проще всего проводник в поле вращать, что и делается в современных электрогенераторах.

Принцип электромагнитной индукции

Но можно менять и параметры самого поля. С постоянным магнитом такой фокус, конечно, не пройдет, а вот с электромагнитом – вполне. Работа электромагнита, кто забыл, основана на обратном эффекте: протекающий через проводник переменный ток генерирует вокруг него магнитное поле, параметры которого (полярность и напряженность) зависят от направления тока и его величины. Для более ощутимого эффекта провод можно уложить в виде катушки.

Таким образом, меняя параметры электротока в электромагните, мы будем менять все параметры наводимого им магнитного поля, вплоть до изменения местоположения полюсов на противоположное.

И тогда это магнитное поле, действительно являющееся переменным, будет наводить электроток в любом токопроводящем материале, расположенном в его пределах. И материал при этом, понятно, будет нагреваться. На этом и основан принцип работы современных индукционных нагревателей.

Индукционный нагрев: принцип действия

Индукционный нагреватель состоит из следующих компонентов:

Генератор переменного тока. Это специальный прибор, который преобразует 50 Гц бытовой сети в электрический ток с более высокой частотой. Индуктор. Это цилиндрическая катушка, изготовленная из медной проволоки, именно она и генерирует электромагнитное поле. Нагревательный элемент. Это металлическая труба или пруток, которые вводятся в электромагнитное поле.

Составляющие индукционной системы взаимодействуют между собой следующим образом:

1. Генератор преобразует частоту электрического тока и передает модифицированную энергию катушке.

2. Индуктор принимает ток высокой частоты и преобразует его в переменное электромагнитное поле, которое меняет вектор (направление потока электромагнитных волн) с высокой частотой.

3. Нагреватель вводится в катушку или приближается к ней, в результате чего нагревается вихревыми токами. Их появление провоцируется переменным вектором электромагнитного поля.

Принцип действия индукционного нагревателя

Передача энергии в этом случае происходит почти без потерь. Поэтому индукционные нагреватели имеют максимальный КПД, а энергии хватает не только для обогрева: электромагнитная индукция активно применяется в металлургии.

Последующее использование генерируемой энергии вполне привычно: она разогревает теплоноситель, который циркулирует внутри нагревателя, имеющего трубчатую структуру. При этом теплоноситель дополнительно играет и роль охладителя, обеспечивая долгий срок службы индукционного котла даже при очень активном его использовании.

Как нетрудно заметить, схема такого прибора довольно проста. Поэтому индукционный нагреватель вполне реально сделать своими руками. Но стоит ли шкурка выделки?

Конструкция аппарата и необходимые детали

Любой сварочный агрегат контактного типа состоит из 2 узлов:

  • блока питания (трансформатора);
  • прижимных клещей.

Для получения мощного электрического разряда при минимальном напряжении применяют индукционный трансформатор. Правильное соотношение обмоток позволяет генерировать ток, силы которого достаточно для плавления металла. Конструкция клещей включает графитовые или медные контакты, устанавливаемые на разные рычаги, фиксирующие механизм.

Существуют следующие типы прижимов:

  1. Механические. Включают мощную пружину и рычаг. Для сжатия металлов применяется мышечная сила сварщика. Прижимы такого типа устанавливают в бытовые аппараты, используемые для простых операций.
  2. Пневматические. Устанавливаются в портативные ручные аппараты. Настраиваются путем изменения давления в воздушном канале. Недостатком считают низкую производительность, невозможность регулировки параметров функционирования во время сварки.
  3. Гидравлические. Прижимы также отличаются небольшой скоростью работы, однако набор настроек у них шире, чем у предыдущего типа.
  4. Электромагнитные. Отличаются самой высокой производительностью, устанавливаются как в ручные, так и в стационарные агрегаты. Электромагнитные прижимы позволяют регулировать силу сжатия деталей при сварке. Это снижает вероятность возникновения непроваров и наплывов металла.

При сборке самодельного аппарата для точечной сварки мастеру потребуются следующие детали и материалы:

  • доработанный трансформатор от старой микроволновой печи или автомобильного аккумулятора;
  • толстый медный провод или жгут кабелей небольшого сечения;
  • рычаги, используемые для сборки зажимов;
  • основание для установки блоков агрегата;
  • прижимные струбцины;
  • провода;
  • изоляционные материалы;
  • медные электроды, необходимые для выполнения сварки;
  • клавиша управления.

Индукционные нагреватели своими руками: пошаговая инструкция

Многих привлекает электрическое отопление тем, что оно работает автономно и не надо за ним постоянно присматривать. Негативной стороной таких отопительных котлов является стоимость и технические требования.

В некоторых местах их просто нельзя применить. Но многих владельцев это не пугает, и они считают, что именно простота эксплуатации перекрывает все недостатки.

Особенно тогда, когда на рынках сбыта появились новые типы электрических котлов, имеющих индуктивные катушки, а не ТЕНы. Они с мгновенной скоростью разогревают теплоноситель и экономно отапливают здание, по мнению владельцев агрегатов. Новый тип котлов называют индукционным.

Новый вид нагревателей удобен в эксплуатации. Считаются безопасными, в сравнении с газовыми нагревателями, нет сажи и копоти, что не скажешь о приборах с твёрдым топливом. И самое главное преимущество – нет нужды заготавливать твёрдое топливо (уголь, дрова, пеллеты).

И как только появились индукционные нагреватели, сразу нашлись умельцы, которые в целях экономии, пытаются создать такую установку своими руками.

В этой статье мы поможем вам сконструировать нагревательный прибор самостоятельно.

Устройство, где происходит нагревание металла и продуктов ему подобных без контакта, называют индукционным нагревателем. Работой управляет переменное индукционное поле, воздействующее на металл, и токи внутри образуют тепло.

Токи высокой частоты воздействуют на продукцию помимо изоляции, из-за чего конструкция является необыкновенной перед другими видами нагрева.

В сегодняшних индукционных нагревателях присутствуют полупроводниковые редукторы частоты. Такой тип нагревания широко используется в термообработке поверхностей из стали и различных соединений, сплавов.

Компактность оборудования используются в новаторских технологиях, при этом, присутствует огромный экономический эффект. Разнообразные модели помогают внедряться гибким и автоматизированным сочетаниям, включающие в себя транзисторные редукторы частот всестороннего типа и соединительные блоки, когда предпочитается индукционная система.

В состав типового нагревательного элемента входят следующие узлы:

  1. Нагревательный элемент в виде прутка или металлической трубки.
  2. Индуктор – это медная проволока, обрамляющая витками катушку. В процессе работы он исполняет роль генератора.
  3. Генератор переменного тока. Отдельная конструкция, где происходит преобразование стандартного тока в величину с высокой частотой.

На практике, индукционные установки используются недавно. Теоретические изучения намного опережают. Такое можно объяснить одной преградой – получение высокой частоты магнитных полей. Дело в том, что использовать установки с низкой частотой считается неэффективным. Как только появились генераторы токов с высокой частотой, проблема разрешилась.

Генераторы ТВЧ прошли свой эволюционный период; от ламповых, до современных моделей, выполняющихся на базе IGBT. Теперь они более эффективные, имеют малый вес и размеры. Частотное ограничение их 100 кГц за счёт динамических потерь транзисторов.

Как работает индукционный нагреватель

Очень просто. Подаем рабочее напряжение на катушку. В катушке создается электромагнитное поле. Дальше читаем внимательно- тут суть егоработы:

Электромагнитное поле наводит в трубе отопления токи Фуко или вихревые токи и металлическая труба начинает нагреваться.

Если кто не знает- у трансформатора магнитопровод набран специально из множества тонких пластин из электротехнической стали, изолированных друг от друга.

Это сделано именно для того, что бы избежать потерь энергии от нагрева вихревыми токами.

Дело в том, что чем массивнее проводник, тем сильнее он будет нагреваться от токов Фуко, в свою очередь увеличить силу воздействия вихревых токов можно скоростью изменения магнитного потока.

Знаете ли вы что у силового трансформатора напряжением 110 кВ на холостом ходу, даже без нагрузки выделяется тепловая мощность около 11 киловатт?

Это в основном именно за счет воздействия вихревых токов, которые нагревают магнитопровод, на который одеты первичная и вторичная обмотка.

При этом магнитопровод- шихтованный, а если бы он был цельный, то тепловые потери возросли бы многократно!

И тансформатор просто напросто сгорел бы от перегрева.

Индукционный электрокотел работает по этому же принципу и стальная труба с водой, проходящая внутри катушки очень сильно греется, НО!- за счет циркуляции воды тепло успевает отводиться от трубы в систему отопления и перегрева не происходит.

Но может ли он быть экономичнее по сравнению с электрокотлами на тэнах? За счет чего?

Вот давайте сначала без разбора и сравнения этих двух типов котлов подумаем:

Есть дом

Не важно какой и не важно где. Хоть под водой, хоть на Эвересте

У этого дома теплопотери- 6 киловатт.

Через стены, через окна, через потолок и т.д.- тепло теряется и что бы поддержать постоянную температуру- надо компенсировать эти теплопотери и для этого надо естественно тоже 6 киловатт тепла.

И не важно где и как берется это тепло, эта тепловая энергия— 6 киловатт- хоть костер жги, хоть газ, хоть бензин, самое главное что бы выделялись эти нужные киловатты тепла!

Теперь самое главное:

для обогрева такого дома понадобится что индукционный нагреватель, что электрокотел на ТЭНах- все равно мощностью тоже не менее 6 кВт.

Другими словами- котел просто преобразует электрическую энергию в тепловую.

А каким образом он это делает- совершенно не важно, ведь для нас самое важное что бы в доме было тепло. Энергия- просто преобразуется из одного вида- в другой, из электрической- в тепловую

И если выделил котел тепла на 6кВт, то взял из сети электроэнергии как минимум- столько же, а учитывая что КПД у котлов не 100%, то и энергии потребляется из сети даже больше немного

Энергия- просто преобразуется из одного вида- в другой, из электрической- в тепловую. И если выделил котел тепла на 6кВт, то взял из сети электроэнергии как минимум- столько же, а учитывая что КПД у котлов не 100%, то и энергии потребляется из сети даже больше немного.

Тогда может быть КПД у индукционного котла выше? По заявлением произодителей это значение достигает 98%.

То же самое и у электрокотла с ТЭНами. КПД у них достигает 99%.

Ну сами подумайте- куда еще может деваться энергия в ТЭНе кроме как выделиться в тепло?

Вся энергия, потребленная из сети ТЭНой преобразуется в тепловую энергию. Взяла 5 кВт- выделила 5 кВт тепла.

Взяла 100 кВт- выделила 100 кВт тепла. Ну может чуть-чуть поменьше если учитывать потери энергии в переходном сопротивлении на зажимах тэны, но опять же- эта потеря энергии выделяется в виде тепла (греется зажим) и в подводящих кабелях.

Но- что зажимы, что сечение кабеля- одинаковые по параметрам и на вихревой индукционный электрокотел и на ТЭН.

Ремонт индукционных нагревателей

Ремонт индукционных нагревателей производится из запасных частей с нашего склада. На данный момент можем отремонтировать все типы нагревателей. Индукционные нагреватели достаточно надежны, если строго следовать инструкциям по эксплуатации и не допускать запредельных режимов работы — в первую очередь следить за температурой и правильным водяным охлаждением.

Тонкости эксплуатации всех типов индукционных нагревателей зачастую не полностью публикуются в документации производителей, их ремонтом должны заниматься квалифицированные специалисты, хорошо знакомые с подробным принципом работы подобной аппаратуры.

Принцип действия

Теоретические разработки в области индукционных средств нагрева долгое время не могли найти практического применения, так как низкая частота не давала нужного эффекта. Существенные сдвиги появились после того как разрешилась проблема относительно выработки высокочастотных магнитных полей. После этого появилась реальная возможность применения индукционных элементах в нагревательных системах.

Конструкция типового устройства состоит из следующих деталей:

  • Генератор тока. Выполняет преобразование напряжения домашней сети в высокочастотный электрический ток.
  • Индуктор. Представляет собой катушку, изготовленную из медной проволоки, в которой, под действием тока образуется магнитное поле.
  • Нагревательный элемент. Как правило, это отрезок металлической трубы, помещенный внутрь индуктора. Он нагревается сам и передает тепловую энергию в систему отопления.

Все эти компоненты находятся в тесном взаимодействии между собой. Ток высокой частоты, вырабатываемый генератором, попадает на индукционную катушку и превращается в электромагнитное поле. Вихревые потоки, возникающие в катушке, воздействуют на металлическую трубу, помещенную внутри, и разогревают ее. Вода, используемая в качестве теплоносителя, проходит через нагревательный элемент, нагревается и переносит тепловую энергию во всю систему отопления. Одновременно вода охлаждает нагревательный элемент, продлевая срок его эксплуатации.

Что понадобится

Для создания нагревателя металла своими руками, помимо рабочих инструментов также следует озаботиться подготовкой целого ряда вещей, приобрести которые следует отдельно:

Обратите внимание!

  • Усилитель звука своими руками: подбор материалов и инструментов для изготовления в домашних условиях + пошаговая инструкция по созданию и сборке своими руками

  • Ветрогенератор своими руками: пошаговая инструкция изготовления устройства в домашних условиях, выбор материалов и типа конструкции

  • Инкубатор своими руками: поэтапный мастер-класс по постройке своими руками, выбор строительных материалов и типа конструкции

Восьмисот миллиметровый отрезок медной трубы, с диаметром в 8-10 мм. С помощью медной проволоки в дальнейшем изготавливается индукционная катушка, излучающая магнитное поле, которое, впоследствии, нагревает металлическую емкость.

Высокомощные силовые транзисторы, приобретение которых станет основной тратой для всех желающих собрать индукционную плиту

Обратите внимание на то, что схема создания частотного генератора предусматривает наличие сразу двух силовых транзисторов

В качестве основного материала, предназначенного для создания колебательного контура, используется обыкновенный керамический конденсатор с характеристиками 0,1мФ и 1600В.

Диоды, применяемые в качестве рабочих элементов, согласно схеме, должны обладать высокой скоростью срабатывания. Индукционная печь своими руками, схема изготовления которой расположена в руководстве, является требовательным устройством на высокоскоростных диодах.

Обратите внимание!

  • Циклон своими руками: способы сборки устройства в домашних условиях, подготовка материалов и инструментов + пошаговая инструкция

  • Сабвуфер своими руками: типы устройств, функции, способы сборки и установки в домашних условиях + пошаговая инструкция и схемы для начинающих

  • Блютуз колонка своими руками — пошаговый мастер-класс изготовления и установки своими руками, необходимые материалы и инструменты

Резисторы: пара штук на 10кОм и 0,25Вт, и еще пара 440Ом и 2Вт. Также следует приобрести стабилитроны с характеристикой рабочего напряжения в 2Вт.

В качестве основного элемента питания используется стандартный блок на 500 ватт. Характеристика рабочего напряжения блока питания должна колебаться в промежутке от двенадцати до сорока ватт.

Используя все вышеприведенные материалы инструменты можно с легкостью собрать индуктор своими руками, схема которого рассматривается в статье.

Принцип работы и область применения

Генератором повышается частота тока и передаёт свою энергию катушке. Индуктором ведётся преобразование высокочастотного тока в переменное электромагнитное поле. С высокой частотой меняются электромагнитные волны.

Нагревание происходит за счёт разогрева вихревых токов, которые провоцируются переменными вихревыми векторами электромагнитного поля. Почти без потерь передаётся энергия с высоким КПД и энергии достаточно на разогрев теплоносителя и даже больше.

Аккумуляторная энергия передаётся на теплоноситель, который находится внутри трубы. Теплоноситель, в свою очередь, является охладителем нагревательного элемента. За счёт чего, увеличивается срок эксплуатации.

Промышленность является наиболее активным потребителем индукционных нагревателей, так как многие проектирования предусматривают вести с высокой термообработкой. С их использованием повышается прочность продукции.

В высокочастотных кузницах устанавливаются приборы с высокой мощностью.

Кузнечно-прессовые компании, используя такие агрегаты, повышают производительность труда и уменьшают износ штампов, сокращают расход металла. Установки со сквозным нагревом могут охватывать сразу некоторое количество заготовок.

При поверхностном упрочнении деталей, применение такого нагрева позволяет увеличить в несколько раз износостойкость и получить значительный экономический эффект.

Общепринятой областью применения устройств, являются пайка, плавка, нагрев перед деформацией, закалка ТВЧ. Но есть ещё зоны, где получают монокристаллические полупроводниковые материалы, наращивают эпитаксиальные плёнки, вспенивают материалы в эл. поле, ТВЧ сварка оболочек и труб.

Заключение

Котлы и нагреватели индукционного типа отличаются высоким КПД, поскольку вся используемая электроэнергия преобразуется в тепло. Перед самостоятельным изготовлением какого-либо устройства настоятельно рекомендуем внимательно изучить схему и проанализировать условия работ. Это позволит избежать ошибок на стадии подготовки.

Электромонтер 6-го разряда Пантелеев Сергей Борисович, опыт работы – 17 лет: Для обогрева своего дома я выбрал совсем простую схему индукционного обогрева. Сначала выбрал участок трубы и зачистил его. Сделал изоляцию из электротехнической ткани и индукционную катушку из медной проволоки. После изоляции системы подключил инвертор. Единственный недостаток этой схемы – электромагнитное поле, которое неблагоприятно действует на организм. Поэтому аппарат пришлось ставить в котельной, где люди появляются редко

Поделитесь в социальных сетях:FacebookTwitterВКонтакте
Напишите комментарий