Регулятор температуры для котла своими руками: инструкция по изготовлению

Процесс настройки

До непосредственной регулировкой механизма вам потребуется убедиться в том, что абсолютно никакой фактор не является помехой специальной заслонке: она свободно может открыться и закрыться. Как отрегулировать регулятор тяги для твердотопливных котлов?

  1. Установите необходимую вам температуру на закрепленной рукоятке устройства. Для этого используется шкала, которая зависит от расположения регулятора – строго вертикального или же строго горизонтального.
  2. Разогрейте топливо в самом котле до выбранной и установленной заранее температуры, проконтролировав процесс термометром.
  3. Сейчас заслонка находится в открытом положении.
  4. Когда вы добились необходимой температуры, закрепите цепочку так, чтобы заслонка осталась открытой на несколько миллиметров. Не забудьте проверить получившееся в результате натяжение прикрепленной цепи.
  5. С помощью специального крепкого винта закрепите расположение рукоятки.

prokommunikacii.ru

Как работает

Схема работы терморегулятора на примере теплого пола. (Для увеличения нажмите)

</p>

Принцип функционирования термостата достаточно прост, поэтому многие радиолюбители для оттачивания своего мастерства делают самодельные аппараты.

При этом можно использовать множество различных схем, хотя наиболее популярной является микросхема-компаратор.

Данный элемент имеет несколько входов, но всего один выход. Так, на первый выход поступает так называемое «Эталонное напряжение», имеющее значение установленной температуры. На второй же поступает напряжение уже непосредственно от термодатчика.

После этого, компаратор сравнивает эти оба значения. В случае, если напряжение с термодатчика имеет определенное отклонение от «эталонного», на выход посылается сигнал, который должен будет включить реле. После этого, подается напряжение на соответствующий нагревающий или охлаждающий аппарат.

Описание

Терморегулятор представляет собой устройство, устанавливаемое в системах энергоснабжения и позволяющее оптимизировать затраты энергии на обогрев. Основные элементы терморегулятора:

  1. Температурные датчики
    – контролируют уровень температуры, формируя электрические импульсы соответствующей величины.
  2. Аналитический блок
    – обрабатывает электрические сигналы поступающие от датчиков и производит конвертацию значения температуры в величину, характеризующую положение исполнительного органа.
  3. Исполнительный орган
    – регулирует подачу, на величину указанную аналитическим блоком.

Современный терморегулятор – это микросхема на основе диодов, триодов или стабилитрона, могущих преобразовывать энергию тепла в электрическую. Как в промышленном, так и самодельном варианте, это единый блок, к которому подключается термопара, выносная или располагаемая здесь же. Терморегулятор включается последовательно в электрическую цепь питания исполняющего органа, таким образом, уменьшая или увеличивая значение питающего напряжения.

Кратко о принципе работы

Для лучшего понимания принципа действия комнатных терморегуляторов сначала поясним алгоритм работы водогрейного котла в базовой комплектации:

  1. Пользователь разжигает отопитель, с помощью кнопок или рукояток управления задает желаемую температуру теплоносителя.
  2. Каждый аппарат оборудован погружным либо накладным датчиком, информирующим блок управления о степени нагрева воды. Когда температура теплоносителя достигает заданного порога, срабатывает газовый клапан и перекрывает подачу топлива к основной горелке. Циркуляционный насос продолжает «гонять» воду по системе.
  3. После остывания теплоносителя до нижнего температурного предела подача газа возобновляется, горелка снова разжигается и подогревает воду.

Без внешнего термодатчика отопитель «не видит» температуру воздуха в помещениях и тупо греет воду до указанного предела. Результат: в переходной осенне-весенний период наблюдается так называемое тактование — частый старт/стоп горелки (1 раз в 2—3 минуты), сокращающее ресурс агрегата в целом.

Теперь о главном. Выносной терморегулятор продлевает интервалы между включением/выключением газового котла, поскольку ориентируется на температуру воздуха, который остывает медленнее. Прибор включается в разрыв цепи электропитания газового клапана (на ТТ-котлах – турбины) и встроенного насоса.

Установка автоматического терморегулятора позволяет убить сразу трех зайцев:

  • снизить потребление энергоносителей;
  • сделать управление котлом более удобным;
  • продлить срок службы источника тепла.

Когда комната прогревается до указанной температуры, термостат разрывает цепь, горелка и встроенный насос теплогенератора останавливаются. Запуск агрегата происходит после охлаждения воздуха на 1—2 градуса, что увеличивает длительность интервала между отключением и розжигом до 15—20 мин.

Отметим 2 значимых нюанса:

  1. При использовании комнатного регулятора штатная функция старт / стоп по температуре воды в котловой рубашке продолжает действовать. Когда теплоноситель в котле нагреется до установленного предела, газогорелочное устройство отключится.
  2. Если горелка гасится по команде внутреннего термодатчика, штатный циркуляционный насос продолжает работать. Когда срабатывает выносной термостат, останавливаются оба устройства – горелка и насосный агрегат.

Вот почему важно правильно настроить связку котел — внешний термостат

Сообщества › Кулибин Club › Блог › Электрика: Датчики температуры, делаем сами.

Иногда возникает нужда в температурном контроле за каким нибудь процессом, будь то автомобиль или народное хозяйство. Схем термоконтроля всяких много, но датчики как правило имеют неудобный конструктив, не предусматривающий крепления в контролируемой среде. Вот о датчиках и поговорим.

Как правило, датчиками для измерительных схем служат полупроводниковые приборы — термисторы:

Корпус может быть другим, но внутри все равно будет сидеть примерно такая капелька с выводами.

Вторым распространенным датчиком температуры является DS1820:

зачастую они продаются в таком виде:

Внутри все та же микросхемка DS18B20 о трех выводах причем даже без термопасты.

Теперь давайте попробуем внедрить эти радиодетали в автомобиль, например для цифровой индикации температуры ОЖ или управления электровентиляторами.

Нам понадобится донорский датчик — любой подходящий по резьбе и стоимости. В моем случае это Волго-УАЗовский датчик ТМ 106-10

Берем дрель в качестве токарного станка и аккуратно зажимаем датчик в патрон. Ножовкой по металлу спиливаем завальцовку. Когда датчик развалится на составные части так же в дрели ровняем край датчика надфилем. Получаем корпус-заготовку для внедрения туда нашей радиодетали.

Далее можно пойти двумя путями:1. Залить в корпус расплавленного припоя, в этом припое просверлить канал и вставить туда термистор. Можно заполнить полость корпуса термопастой и воткнуть термистор в неё, но у олова теплопроводность на несколько порядков лучше чем у термопасты, поэтому термопасту конечно же надо применять, но мазать ее лучше тонким слоем.

Минус этого метода в большой инерционности полученного датчика.

2. Сделать так, как делаю это я Берем телескопическую антенну от какого нибудь старого ненужного девайса:

Если вы их раньше выкидывали, то делали это зря, потому что такие антеннки являются источником замечательных тонкостенных латунных трубочек разного диаметра:

Подбираем трубочку наиболее подходящую к термистору — он должен максимально плотно вставляться внутрь трубки. Отмеряем и опять воспользовавшись дрелью, отрезаем нужный нам кусочек трубки — резать лучше надфилем. Берем наш корпус-заготовку и сверлим его торец по диаметру трубки. Торец корпуса лудим оловом, трубку зачищаем до латуни и тоже облуживаем. Вставляем трубку в корпус и припаеваем их друг к другу, паяльника на 80Вт хватает за глаза. Должно получиться как то так (торец уже запаян небольшим кусочком медной фольги толщиной 1мм):

Проверяем полученный корпус датчика на герметичность. Я делаю это не очень технологично — на присос языком

Советуем изучить Помещения по степени опасности поражения электрическим током

Если с герметичностью все в порядке приступаем к следующей стадии: установке термистора и разъема.

Опять все примеряем и отрезаем выводы термистора с тем расчетом, чтобы при установке в корпус термистор находился в конце трубки, а лучше упирался в торец:

Теперь термистор готов к установке. Закладываем немного термопасты вовнутрь трубки, сам термистор тоже немного обмазываем термопастой и вставляем в трубку. После того как термистор вошел в трубку под разъем закладываем немного приготовленного заранее поксипола или эпоксидного пластилина. Вдавливаем разъем в поксипол, излишки убираем. Когда поксипол окончательно застынет получается вот такой симпатичный датчик готовый к установке:

А вот так датчик будет стоять на своем рабочем месте — измерительная часть будет полностью омываться рабочей средой:

Ну и картинка общей проверки работоспособности электрической части:

Регулятор температуры для котла отопления своими руками

Дорогие котлоагрегаты обычно оснащены качественными регуляторами температуры, потому нареканий со стороны владельцев не вызывают. Но не все могут позволить себе приобрести недешевое отопительное оборудование. Потому те, кто хоть немного разбирается в электронике и электротехнике, может самостоятельно сделать устройство, которое будет не хуже заводских дорогих терморегуляторов.

Собрать сложный, высокоточный программируемый регулятор температуры под силу не каждому. Потому стоит начать с простых схем. К тому же, комплектующие для них стоят не дорого.

Схема изготовления регулятора температуры для котла отопления

Прежде чем приступать к работе, нужно собрать все необходимое. И первая в этом списке – схема будущего терморегулятора. От нее нужно отталкиваться при подборе комплектующих и нужных деталей. Стандартный набор будет выглядеть так:

  • деталь или элемент, который будет «следить» за показателями температуры;
  • транзисторы и микросхемы, из которых будет собран блок обработки. Его функция – сравнение установленных пользователем значений с полученными;
  • деталь, отвечающая за активацию или деактивацию котла.

Пошаговая инструкция

Если человек имеет только базовые знания в области электроники и работы с электротехникой, то при сборке регулятора для котла ему лучше опираться на вариант с стабилитроном. Это полупроводниковый диод, способный пропускать электрический ток в одну сторону.

Необходимые детали для сборки терморегулятора своими руками по схеме:

  • основа – стабилитрон TL431;
  • блок питания (достаточно 12 В);
  • терморезистор – 22 Ом;
  • 2 сопротивления на 100 Ом и 10 кОм;
  • герконовое реле (РЭС-47);
  • провода для соединения деталей;
  • колодки;
  • печатная плата;
  • корпус;
  • паяльник.

Инструкция по сборке:

Сравнивают размеры печатной платы и корпуса. При необходимости подгоняют ее по размеру. Инструментом создают несколько отверстий для крепления и также формируют токоведущие дорожки. После закрепляют колодки.
Изучают схему. В соответствии с ней на плате размещают все основные компоненты будущего терморегулятора для котла. Фиксируют их с помощью паяльника.
Соединяют линии термосопротивления, питания и управления.
Заключительный этап – проверка работоспособности устройства прибором

Здесь важно, чтобы силовое реле срабатывало при измерении сопротивления подстроечного резистора.

Есть 2 варианта размещения собранного терморегулятора – рядом с котлом или в комнате дома. Если устройство выглядит не очень презентабельно – лучше его спрятать поближе к котлоагрегату.

Электрические котлы

Достаточно распространённая альтернатива газовым и твердотопливным котлам. Масса преимуществ, большой КПД, но большой срок окупаемости. Подключение простое, как и у газовых котлов, но без подвода холодной воды. Предусмотрено регулирование температуры и защита от перегрева.

Механический таймер котла

При помощи простого механического таймера электрического котла возможны три варианта запуска системы центрального отопления :

  1. Котёл выключен;
  2. Котёл подаёт тёплую воду;
  3. Котёл включается и выключается в установленное время.

Механические таймеры обычно имеют большой круглый циферблат с 24-часовой шкалой в центральной части. Поворачивая диск, можно установить нужное время, а затем оставить его в таком положении. Включение котла будет происходить в нужное время. Внешняя часть состоит из набора вкладок 15-минутного периода, которые вставлены для удобства регулировки работы и настройки режимов. Возможна экстренная перенастройка, которая выполняется при включённом в сеть котле.

Механические таймеры просты в настройке, но при этом котёл всегда включается и выключается в то же время каждый день, а это может не удовлетворить хозяев, если семья большая, и банные процедуры проводятся несколько раз в день в разное время.

ТЕРМОРЕГУЛЯТОР ДЛЯ ИНКУБАТОРА

А.Н. Хиленко. г.Кременчуг. Полтавская обл.

Предложена схема простого и надежного в работе термореле для инкубатора. Отличается малым потреблением электроэнергии, выделение тепла на силовых элементах и балластном резисторе незначительно. Предлагаю схему простого и надежного в работе термореле для инкубатора. Схема изготовлена, испытана, проверена в работе в непрерывном режиме в течение нескольких месяцев эксплуатации.

Технические данные: Напряжение питания 220 В, 50 Гц Коммутируемая мощность активной нагрузки до 150 Вт. Точность поддержания температуры ±0,1 °С Диапазон регулирования температуры от + 24 до 45°С.

Принципиальная схема устройства показана на рис.1. На микросхеме DA1 собран компаратор. Регулировка заданной температуры производится переменным резистором R4. Термодатчик R5 подключен к схеме экранированным проводом в хлорвиниловой изоляции через фильтр C1R7 для уменьшения наводок. Можно применить двойной тонкий провод, свитый в жгут. Терморезистор необходимо поместить в тонкую полихлорвиниловую трубку.

Конденсатор С2 создает отрицательную обратную связь по переменному току. Питание схемы осуществляется через параметрический стабилизатор, выполненный на стабилитроне VD1 типа Д814А-Д. Конденсатор С3 — фильтр по питанию. Балластный резистор R9 для уменьшения рассеиваемой мощности составлен из двух последовательно соединенных резисто¬ров 22 кОм 2 Вт. С этой же целью транзисторный ключ на VT1 типа КТ605Б, КТ940А подключен не к стабилитрону, а к аноду тиристора VS1.

Выпрямительный мост собран на диодах VD2-VD5 типа КД202К,М,Р, установленных на не-большие П-образные радиаторы из алюминия толщиной 1-2 мм площадью 2-2,5 см2 Тиристор VS1 также установлен на аналогичный ра¬диатор площадью 10-12 см2

В качестве нагревателя используются осветительные лампы HL1…HL4, включенные последовательно-параллельно для увеличения срока службы и исключения аварийных ситуаций в случае перегорания нити накала одной из ламп.

Работа схемы. Когда температура термодатчика меньше заданного уровня, выставленного потенциометром R4, напряжение на выводе 6 микросхемы DA1 близко к напряжению питания. Ключ на транзисторе VT1 и тиристоре VS1 открыт, обогреватель на HL1…HL4 подключен к сети. Как только температура достигнет заданного уровня, микросхема DA1 переключится, напряжение на ее выходе станет близким к нулю, тиристорный ключ закроется, и обогреватель отключится от сети. При отключении обогревателя температура начнет понижаться, и когда она станет ниже заданного уровня, снова включатся ключ и обогреватель.

Детали и их замена. В качества DA1 можно применить К140УД7, К140УД8, К153УД2 (Прим.ред. — подойдет практически любой операционный усилитель или компаратор). Конденсаторы любого типа на соответствующее рабочее напряжение. Терморезистор R5 типа ММТ-4 (или другой с отрицательным ТКС). Его номинал может быть от 10 до 50 кОм. При этом номинал R4 должен быть таким же. Печатная плата при используемой микросхеме DA1 типа КР140УД6 показана на рис.2.


Устройство, выполненное из исправных деталей, начинает работать сразу. При испытании и работе следует соблюдать правила техники безопасности, так как устройство имеет гальваническую связь с сетью.

Радiоаматор-Электрик №8/2001, стр. 23. Консультант портала по электронике С. Тинкован

Сообщества › Кулибин Club › Блог › Электрика: Датчики температуры, делаем сами.

Иногда возникает нужда в температурном контроле за каким нибудь процессом, будь то автомобиль или народное хозяйство. Схем термоконтроля всяких много, но датчики как правило имеют неудобный конструктив, не предусматривающий крепления в контролируемой среде. Вот о датчиках и поговорим.

Как правило, датчиками для измерительных схем служат полупроводниковые приборы — термисторы:

Корпус может быть другим, но внутри все равно будет сидеть примерно такая капелька с выводами.

Вторым распространенным датчиком температуры является DS1820:

зачастую они продаются в таком виде:

Внутри все та же микросхемка DS18B20 о трех выводах причем даже без термопасты.

Теперь давайте попробуем внедрить эти радиодетали в автомобиль, например для цифровой индикации температуры ОЖ или управления электровентиляторами.

Нам понадобится донорский датчик — любой подходящий по резьбе и стоимости. В моем случае это Волго-УАЗовский датчик ТМ 106-10

Берем дрель в качестве токарного станка и аккуратно зажимаем датчик в патрон. Ножовкой по металлу спиливаем завальцовку. Когда датчик развалится на составные части так же в дрели ровняем край датчика надфилем. Получаем корпус-заготовку для внедрения туда нашей радиодетали.

Далее можно пойти двумя путями:1. Залить в корпус расплавленного припоя, в этом припое просверлить канал и вставить туда термистор. Можно заполнить полость корпуса термопастой и воткнуть термистор в неё, но у олова теплопроводность на несколько порядков лучше чем у термопасты, поэтому термопасту конечно же надо применять, но мазать ее лучше тонким слоем.

Минус этого метода в большой инерционности полученного датчика.

2. Сделать так, как делаю это я Берем телескопическую антенну от какого нибудь старого ненужного девайса:

Если вы их раньше выкидывали, то делали это зря, потому что такие антеннки являются источником замечательных тонкостенных латунных трубочек разного диаметра:

Подбираем трубочку наиболее подходящую к термистору — он должен максимально плотно вставляться внутрь трубки. Отмеряем и опять воспользовавшись дрелью, отрезаем нужный нам кусочек трубки — резать лучше надфилем. Берем наш корпус-заготовку и сверлим его торец по диаметру трубки. Торец корпуса лудим оловом, трубку зачищаем до латуни и тоже облуживаем. Вставляем трубку в корпус и припаеваем их друг к другу, паяльника на 80Вт хватает за глаза. Должно получиться как то так (торец уже запаян небольшим кусочком медной фольги толщиной 1мм):

Проверяем полученный корпус датчика на герметичность. Я делаю это не очень технологично — на присос языком

Если с герметичностью все в порядке приступаем к следующей стадии: установке термистора и разъема.

Опять все примеряем и отрезаем выводы термистора с тем расчетом, чтобы при установке в корпус термистор находился в конце трубки, а лучше упирался в торец:

Теперь термистор готов к установке. Закладываем немного термопасты вовнутрь трубки, сам термистор тоже немного обмазываем термопастой и вставляем в трубку. После того как термистор вошел в трубку под разъем закладываем немного приготовленного заранее поксипола или эпоксидного пластилина. Вдавливаем разъем в поксипол, излишки убираем. Когда поксипол окончательно застынет получается вот такой симпатичный датчик готовый к установке:

Советуем изучить Электробезопасность на предприятии

А вот так датчик будет стоять на своем рабочем месте — измерительная часть будет полностью омываться рабочей средой:

Ну и картинка общей проверки работоспособности электрической части:

Котлы длительного горения

КПД котлов длительного горения практически не отличается от аналогичного параметра классических моделей. Но они имеют весомое преимущество – здесь существенно увеличивается длительность горения топлива. Увеличенное время горения обусловлено габаритами топливной камеры, вмещающей в себя большее в сравнении с другими модификациями количество дров или другого твердого топлива. Наиболее распространенные схемы подразумевают расположение топки в нижней части котла, а топливо сгорает по принципу «снизу-вверх».

Конструкции длительного горения могут «похвастаться» нетрадиционным решением – процесс горения начинается сверху, а заканчивается внизу.

Модели очень удобны в эксплуатации, ведь в таком режиме работы одной загрузки дров хватает на обогрев помещения в течении 12-ти часов. В случае использования угля эксплуатация становится еще комфортнее – загружать топливо не придется целых двое суток!

Метки: датчик температуры, изготовление датчика

Комментарии 153

Я точно такой же на двухконтурный котёл поставил.Тертий сезон уже пашет.Блок питания от усилителя антенны. А у вас контролёр с датчиком шла?

нет, датчик насколько я помню, покупал отдельно в Чип и Дипе

Но вообще потом все задуманное собрал на DS18B20

А такой вариант: термопара закрепленная на патрубке и простенький мультиметр в режиме измерения температуры

Подскажите, а плата для индикации- это что за она? Самодельная?

нет, не самодельная — друг на алиэкспрессе купил «пучёк за пяточёк» и одну мне подарил:

Сами такую приблуду не думали замутить?

Думал. На датчике ДС1820. Но так вышло что зашел в гости к другу, за рюмочкой чая разговорились, я ему рассказал что хочу сделать, а он достал с полки это устройство, да мне и отдал. Теперь надобность в самостоятельном изготовлении как бы и отпала.А так я вот по этой схеме уже делал раньше и у меня под нее все есть:

Даллас лучше работает по сравнению с термисторами, и в цифре.Правда диапазон маловат.

почему маловат? для применения в авто более чем достаточен.

У далласа в принципе диапазон измерений лучьше.Но верхняя планка критична.Термистор на сколько я помню не надежен.Хотя если потенциал сидит 12 вольт, то работает.А Далласу надо стабильное питание.

Можно подробнее что значит критичней верхняя планка? Больше 120 градусов я нагревал феном датчик, вроде работает после этого.

Верхний диапазон температуры вроде равен 125 градусов у далласа.То бишь -50 и +125.А температура если нужна будет контролирумая выше 125 то Даллас не справится.Вообще точность у него нормальная, но задержка есть 0,5-1 сек.Есть 3 проводное подключение, есть возможность подключать по 2 проводам.Будет задержка и диапазон меньше.

Советуем изучить Делитель напряжения

Знаю про эти подключения, сейчас ради прикола попровал нагреть датчик феном, 127.9 удалось максимально на нем увидеть, дальше ноли, когда остывает то приходит в норму)

да не, это уже отработанная технология. заморочился только с тем что все отфоткал, сформулировал и выложил сюда )

Я понимаю, что отработанная, просто стоит ли это таких трудов при сравнительно невысокой стоимости датчика? Хотя конечно бывают редкие и дорогие датчики…

да не, дело не в стоимости, а в том чтобы запихнуть китайский датчик в нужный конструктив.вот надо тебе температуру воды например регулировать кипятильником — просто так же датчик в воду не засунешь его надо как то вкрутить, соответственно нужен корпус.

кстааати, а клевая идея…слушай во сколько мжет обойтись такой самый дешевый датчик? еще бы он вот цепь бы размыкал как терморегулятор и тогда цены бы не было…

Я понимаю, что отработанная, просто стоит ли это таких трудов при сравнительно невысокой стоимости датчика? Хотя конечно бывают редкие и дорогие датчики…

Ну, смотри — у меня, к примеру, Бош Моно-Джетроник, по всем таблицам ДТВВ и ДТОЖ должны (при одинаковой температуре воздуха и ОЖ) давать «мозгам» одинаковое сопротивление. При этом ДТВВ вполне адекватен, но замене не подлежит (из-за особенностей конструкции). А ДТОЖ — «глючный», при разности показаний ЭБУ начинает «подгонять», т.к. не может сообразить кому верить (ДТОЖ или ДТВВ)!Покупал 4 (ЧЕТЫРЕ) разных датчика — все разное сопротивление при одинаковой температуре дают!А при вышеописанной технологии есть возможность подобрать копеечный термистор практически под любое значение сопротивление при заданной температуре! Да, что там, можно заменить ОБА термистора (подобрав нужное сопротивление) и на ДТОЖ и на ДТВВ ! А это поможет решить сразу несколько проблем с «глюками» электронной системы питания! Тем более цена китайских термисторов, расходников и проч. не идёт ни в какое сравнение с «фирменными» датчиками (которые невозможно иногда заменить, или они стоят как крыло от самолёта) !Я понятно объясняю? )))

Термодатчик на германиевых диодах

Особенностью германиевых полупроводниковых диодов является их высокая чувствительность к изменениям температуры воздуха. Поэтому эти радиодетали могут использоваться, как термодатчики при их обратном включении.

Их применение объясняется сильной зависимостью обратного тока от температуры окружающей среды. Эта особенность диодов используется в простой схеме регулятора скорости кулера.

Германиевые диоды, соединённые параллельно (3–4 шт.), включают в обратном направлении в цепь базы составного транзистора. Их стеклянные корпуса можно крепить прямо на кулер без всяких прокладок-теплоотводов. Резистор R1 предохраняет транзистор от теплового пробоя, а R2 определяет порог срабатывания регулятора. Если при превышении комнатной температуры вентилятор не включается, то число диодов надо увеличить. Когда кулер начинает вращать лопасти с большой скоростью количество радиодеталей уменьшают.

Преимущества и недостатки

Несомненно, использование автоматического регулирования, уже само по себе является преимуществом, так как потребитель энергии получает такие возможности:

  • Экономия энергоресурсов.
  • Постоянная комфортная температура в помещении.
  • Не требуется участие человека.

Автоматическое управление нашло особенно большое применение в системах отопления многоквартирных домов. Оборудуемые терморегуляторами вводные задвижки автоматически управляют подачей теплоносителя, благодаря чему жители получают значительно меньшие счета.

Недостатком такого прибора можно считать его стоимость, что впрочем, не относится к тем, что изготовлены своими руками. Дорогостоящими являются только устройства промышленного исполнения, предназначенные для регулирования подачи жидких и газообразных сред, так как исполнительный механизм включает в себя специальный двигатель и другую запорную арматуру.

Хотя сам прибор достаточно нетребователен к условиям эксплуатации, точность реагирования зависит от качества первичного сигнала и особенно это касается автоматики работающей в условиях повышенной влажности или контактирующей с агрессивными средами. Термодатчики в таких случаях, не должны контактировать с теплоносителем напрямую.

Выводы закладываются в гильзу из латуни, и герметично запаиваются эпоксидным клеем. Оставить на поверхности можно торец терморезистора, что будет способствовать большей чувствительности.

При оборудовании погреба необходимо создать такой температурный режим, при котором все запасы будут сохраняться максимально долго. А чтобы его поддерживать, потребуется терморегулятор — прибор, который помогает поддерживать заданную температуру. Это устройство используется во многих бытовых приборах: утюгах, холодильниках, паяльниках. Как сделать терморегулятор для погреба своими руками?

Простой терморегулятор своими руками – схема

Устройство термостата особой сложностью не отличается, поэтому многие начинающие радиолюбители оттачивают на изготовлении этого прибора свое мастерство. Схемы предлагаются самые разные, но наибольшее распространение получил вариант с применением особой микросхемы, называемой компаратором.

У этого элемента есть два входа и один выход. На один вход подается некое эталонное напряжение, которое соответствует требуемой температуре, а на второй – напряжение от термодатчика.


Схема терморегулятора для теплых полов

Компаратор сравнивает поступающие данные и при определенном их соотношении генерирует на выходе сигнал, открывающий транзистор или включающий реле. При этом подается ток на нагреватель или холодильный агрегат.

Как устроен автоблок

Производители изготавливают блоки управления, которые включают все вышеперечисленные приборы. Даже если внешне они отличаются, их принцип работы все равно остается одинаковым.

Большой популярностью пользуется автоматика от итальянского производителя EuroSIT. Можно отметить марку 630, которая имеет множество функций, надежность и большой срок службы. Рассмотрим устройство автоматического блока такой модели.

Автоматический блок EuroSIT 630 состоит из следующих элементов:

  1. Кожуха, который состоит из модуля регулятора давления, пружинного клапана и отсекателя. Благодаря этому облегчается его устройство.
  2. Подача газа производится через трубу, подключенную к корпусу.
  3. Кабели от датчиков и других элементов подведены к корпусу.
Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий