Расчет водяного отопления: формулы, правила, примеры выполнения

Расчет расширительного бака

Основные правила:

Объем расширительного бака должен быть не менее 10% от объема системы отопления. Данного объема будет достаточно для расширения теплоносителя при нагреве в пределах 45…80 °С.
Для больших протяженных систем, с высокой температурой теплоносителя, запас по объему должен быть не менее 80% от объема системы отопления. Это актуально для котлов с максимальной температурой теплоносителя выше 80…90 °С, паровых систем отопления от печей.
Объем расширительного бака с предохранительным клапаном может составлять 3-5% от объема системы отопления

Но при этом важно контролировать его работу: при срабатывании клапана необходимо пополнять систему водой.
При расчете необходимо учитывать давление в системе. В большинстве случаев для одно и двухэтажных коттеджей оно составляет 1,5…2 атмосферы

Масса готовых баков рассчитаны на данные показатели с запасом. При проектировании системы отопления большого объема, с повышенными характеристиками давления в коммуникациях (для высотных зданий), необходимо учитывать данный параметр.
Учитывать вид теплоносителя при выборе – обязательно. Чем легче жидкость в системе – тем больший расширительный бак ей требуется.

Теплый пол расчет мощности

На определение необходимой мощности теплого пола в помещении влияет показатель теплопотерь, для точного определения которых потребуется произвести сложный теплотехнический подсчет по особой методике.

  • При этом учитываются следующие факторы:
  • площадь обогреваемой поверхности, общая площадь помещения;
  • площадь, тип остекления;
  • наличие, площадь, тип, толщина, материал и термическое сопротивление стен и иных ограждающих конструкций;
  • уровень проникновения солнечных лучей в помещение;
  • наличие иных источников тепла, в том числе учитывается тепло, источаемое оборудованием, различными приборами и людьми.

Методика выполнения подобных точных расчетов требует глубоких теоретических знаний и опыта, а потому теплотехнический расчет лучше доверить специалистам.

Ведь только они знают, как рассчитать мощность теплого пола водяного с наименьшей погрешностью и оптимальными параметрами

Особенно это важно при проектировании обогреваемого встроенного отопления в помещениях большой площадью с большой высотой

Укладка и эффективная эксплуатация водяного обогреваемого пола возможна лишь в помещениях с уровнем теплопотерь менее 100 Вт/м². Если теплопотери выше, необходимо принять меры по утеплению помещения с целью снижения потерь тепла.

Однако если проектный инженерный расчет стоит немалых денег, в случае с небольшими помещениями приблизительные расчеты можно провести самостоятельно, приняв 100 Вт/м² за усредненную величину и отправную точку в дальнейших расчетах.

  1. При этом для частного дома принято корректировать усредненный показатель потерь тепла исходя из общей площади строения:
  2. 120 Вт/м² – при площади дома до 150 м²;
  3. 100 Вт/м² – при площади 150-300 м²;
  4. 90 Вт/м² – при площади 300-500 м².

Нагрузка на систему

  • На то, какая будет мощность водяного теплого пола на квадратный метр, влияют такие параметры, создающие нагрузку на систему, определяющие гидравлическое сопротивление и уровень теплоотдачи, как:
  • материал, из которого изготовлены трубы;
  • схема укладки контуров;
  • длина каждого контура;
  • диаметр;
  • расстояние между нитками труб.

Характеристика:

Трубы могут быть медными (отличаются наилучшими теплотехническими и эксплуатационными характеристиками, однако обходятся не дешево и требуют специальных навыков, а также инструмента).

Основных схем укладки контура два: змейкой и улиткой. Первый вариант наиболее прост, но менее эффективен, так как дает неравномерный нагрев пола. Второй более сложен в реализации, но эффективность прогрева на порядок выше.

Площадь, отапливаемая одним контуром, не должна превышать 20 м². Если отапливаемая площадь больше, то целесообразно трубопровод разбить на 2 или более контуров, подключив их к распредколлектору с возможностью регулирования нагрева участков пола.

Общая длина труб одного контура должна быть не больше 90 м. При этом, чем больший выбран диаметр, тем больше расстояние между нитками труб. Как правило, не применяются трубы с диаметром более 16 мм.

Каждый параметр имеет свои коэффициенты для дальнейших расчетов, посмотреть которые можно в справочниках.

Расчет мощности теплоотдачи: калькулятор

Чтобы определить мощность водяного пола, необходимо найти произведение общей площади помещения (м²), разницы температур подачи и обратно поступающей жидкости, и коэффициентами, зависящими от материала труб, напольного покрытия (дерево, линолеум, плитка и т.д.), других элементов системы.

Мощность водяного теплого пола на 1 м², или теплоотдача, не должна превышать уровень теплопотерь, однако не более чем на 25%. В случае слишком малого или слишком большого значения, необходимо произвести перерасчет, выбрав иной диаметр труб и расстояние между нитями контура.

Показатель мощности тем выше, чем больше диаметр выбранных труб, и тем ниже, чем больший шаг задан между нитками. Для экономии времени можно воспользоваться электронными калькуляторами расчета водяного пола или скачать специальную программу.

Объемы воды для различных элементов системы отопления

Объем воды (литры) в секции радиатора

Материал/тип радиатораГабариты*: высота×ширина, ммОбъем, л
Алюминий600×800,450
Биметалл600×800,250
Современная чугунная батарея (плоский)580×751,000
Чугунная батарея старого образца ()600×1101,700

*ВАЖНО! Габариты в таблице даны ориентировочно. В большинстве моделей современных производителей они составляют ±20 мм по ширине, высота радиаторов отопления может варьироваться от 200 до 1000 мм

В большинстве моделей современных производителей они составляют ±20 мм по ширине, высота радиаторов отопления может варьироваться от 200 до 1000 мм.

Объем сильно отличающихся по высоте радиаторов можно приблизительно рассчитать из данной таблицы по правилу пропорции: необходимо объем разделить на высоту и умножить после на высоту выбранной модели. Если система отопления протяженная, то лучше уточнить параметры объема у производителя.

Объем воды в 1 погонном метре трубы

  • ø15 (G ½») — 0,177 литра
  • ø20 (G ¾») — 0,310 литра
  • ø25 (G 1,0″) — 0,490 литра
  • ø32 (G 1¼») — 0,800 литра
  • ø40 (G 1½») — 1,250 литра
  • ø50 (G 2,0″) — 1,960 литра

Основные размеры внутренних диаметров труб (взят ряд значений от 14 до 54 мм), с которыми может столкнуться потребитель.

Внутренний диаметр, ммОбъем жидкости в 1 м погонного трубы, лВнутренний диаметр, ммОбъем жидкости в 1 м погонного трубы, л
140,1539300,7069
150,1767320,8042
160,2011340,9079
170,2270361,0179
180,2545381,1341
190,2835401,2566
200,3142421,3854
210,3464441,5205
220,3801461,6619
230,4155481,8096
240,4524501,9635
260,5309522,1237
280,6158542,2902

Водяное отопление с принудительной циркуляцией

Если обеспечивается принудительная циркуляция теплоносителя, уклон труб не имеет большого значения. Такие системы на 20-30% эффективнее тех, в которых вода движется естественным образом. В них вместо расширительных баков применяются гидроаккумулирующие емкости. Поскольку давление в трубах и батареях может достигать 1,5-2 атмосфер, то необходимо установить дополнительные элементы для обеспечения безопасности: воздушные и предохранительные клапаны, манометры и прочее. На обеих сторонах циркуляционного водяного насоса для отопления должны находиться запорные клапаны, благодаря которым подача теплоносителя в систему может быть остановлена.

Обзор программ

Для удобства расчётов применяются любительские и профессиональные программы вычисления гидравлики.

Самой популярной является Excel.

Можно воспользоваться онлайн-расчётом в Excel Online, CombiMix 1.0, или онлайн-калькулятором гидравлического расчёта. Стационарную программу подбирают с учётом требований проекта.

  • HERZ C.O. 3.5 – производит расчёт по методу удельных линейных потерь давления.
  • DanfossCO и OvertopCO – умеют считать системы с естественной циркуляцией.
  • «Поток» (Potok) — позволяет применять метод расчёта с переменным (скользящим) перепадом температур по стоякам.

Следует уточнять параметры ввода данных по температуре — по Кельвину/по Цельсию.

Электрическое отопление производственных помещений

Останавливая свой выбор на электрическом способе отопления, следует рассматривать два варианта обогрева цеховых или складских помещений:

  • с помощью электрических котлов отопления для производственных помещений;
  • с использованием переносных электронагревательных приборов.

В отдельных случаях бывает целесообразно устанавливать небольшие электрические печи для отопления производственных помещений с небольшой площадью и высотой потолков.

Электрические котлы обладают КПД до 99%, их работа полностью автоматизирована благодаря наличию программируемого управления. Кроме выполнения отопительной функции, котел может служить источником горячего водоснабжения. Обеспечивается абсолютная чистота воздуха, поскольку нет выброса продуктов сгорания. Однако многочисленные преимущества электрических котлов перечеркиваются слишком высокой стоимостью потребляемой ими электроэнергии.

Электрические конвекторы могут успешно конкурировать с электрическими котлами в сфере отопления производственных помещений. Существуют электрические конвекторы с естественной конвекцией, а также и с принудительной подачей воздуха. Принцип работы этих компактных приборов заключается в способности обогревать помещения способом теплообмена. Воздух проходит через нагревательные элементы, его температура повышается, и далее он совершает обычный цикл циркуляции внутри помещения.

Отопительные излучающие панели за сравнительно короткий срок сумели продемонстрировать свои отличные энергоберегающие характеристики. Внешне они имеют сходство с конвекторами, но их отличие проявляется в особом устройстве нагревательного элемента. Преимуществом электрических излучающих панелей считается их свойство воздействовать на находящиеся в помещении предметы, не нагревая понапрасну воздух. Поддерживать заданную температуру помогают автоматические терморегуляторы.

Отправьте заявку и получите КППодберем оборудование, удешевим смету, проверим проект, доставим и смонтируем в срок. Нажимая на кнопку «Отправить заявку», вы принимате пользовательское соглашение. —>

+7 (495) 241-17-30

Пн.-пт.: 09.00 — 19.00

Москва, Строительный пр., д 7А, к. 39, стр 2

info@airclimat.ru

Copyright 2003 — 2020 Вентиляция и кондиционирование Инвест Строй. <index>

Многие думают, что отопление производственных помещений ничем не отличается от обогрева жилых зданий. На самом деле, здесь необходимо позаботиться о многих аспектах, к примеру, о соблюдении соответствующего температурного режима, уровня запыленности воздуха, а также о его влажности.

Кроме того, следует учитывать особенности технологического процесса производства, высоту и размер помещения, а также расположение в нем оборудования. Приступать к выбору, проектированию и установке системы теплоснабжения производства следует после проведения расчета необходимой мощности.

Гидравлический расчет системы отопления: цели и задачи


Практическая цель такого расчета — это выбор внутренних Д вн труб и установление перепада напора в сети, для профессионального подбора электронасоса, способного обеспечить надежную циркуляцию теплоносителя. Диаметр труб обязан обеспечить радиатор таким объемом греющей воды, которое требуется ему для функционирования с рабочей производительностью. Одновременно с этим принимается скорость циркуляции теплоносителя, она должна находится в промежутке от 0.2 до 0.5 л/с, а разница температур воды на входе/выходе из прибора отопления — 15-20 С.

Чем дальше размещена батарея от котла, тем большую дистанцию обязана пройти жидкость и, следовательно, тем более значимое гидросопротивление станет мешать ее продвижению. Для выполнения корректировки скорости течения воды необходимо использовать трубы разного диаметра.

Подбор счётчиков тепла

Подбор счётчика тепла осуществляется исходя из технических условий теплоснабжающей организации и требований нормативных документов. Как правило, требования предъявляются к:

  • схеме учёта
  • составу узла учёта
  • погрешности измерений
  • составу и глубине архива
  • динамическому диапазону датчика расхода
  • наличию устройств съёма и передачи данных

Для коммерческих расчётов допускаются только сертифицированные счётчики тепловой энергии зарегистрированные в Государственном реестре средств измерительной техники. В Украине запрещено использовать для коммерческих расчётов счётчики тепловой энергии датчики расхода которых имеют динамический диапазон менее чем 1:10.

Делаем расчет объема системы отопления по формуле

Перед тем, как приступить к монтажу циркуляционного насоса или расширительного бачка, непременно следует сделать расчет объема системы отопления и, конечно, расчет циркуляционного насоса для системы отопления. Чтобы получить правильный результат, необходимо суммировать объемы всех элементов отопительной конструкции, а именно котла, радиаторов и трубопроводов.

Формула, позволяющая выполнить расчет емкости системы отопления и ее элементов, выглядит так:

V = (VS х Е): d, где

V — означает объем расширительного бачка; VS — объем системы отопления расчет для которой делается с учетом котла, трубопровода, батарей и теплообменника; Е — коэффициент расширения горячего теплоносителя; d – показатель эффективности емкости, которую планируется установить в отопительную конструкцию.

Особенности водяных отопительных систем

Выбор прибора зависит от нескольких факторов, в частности:

  • площади дома;
  • климатических особенностей региона;
  • доступности одного или другого вида топлива.

В местности, где является недоступным газ, чаще всего используются твердотопливные приборы, хотя существует возможность приобретать газовые баллоны. Однако водяное отопление частного дома с помощью них обходится недешево, поэтому в данном случае приходится искать другие источники энергии – твердотопливные котлы, работающие на дровах и древесных отходах, являются лучшим вариантом. Если нет доступа к этим ресурсам, часто пользуются электрическими котлами, но они потребляют большое количество электроэнергии, и обогрев дома обходится весьма дорого.

Монтаж водяной системы происходит практически одинаково во всех случаях, независимо от того, какой вид оборудования используется. Поскольку она имеет универсальную схему, можно одновременно установить сразу несколько генераторов тепла – это позволит сделать систему автономной, получить максимальную эффективность обогрева и исключить риск остаться без теплоснабжения. Однако при параллельном подключении котлов нужно обязательно установить специальную автоматику, которая позволит переключаться между приборами в том случае, если один из них не сможет работать из-за отсутствия топлива.

Определение диаметра труб

Для окончательного определения диаметра и толщины отопительных труб осталось обсудить вопрос относительно потерь теплоты.

Максимальное количество тепла уходит из помещения через стены – до 40%, через окна – 15%, пол – 10%, всё остальное через потолок/крышу. Для квартиры характерны потери в основном через окна и балконные модули

Существует несколько видов потерь теплоты в отапливаемых помещениях:

  1. Потери давления потока в трубе. Этот параметр прямо пропорционален произведению удельной потери на трение внутри трубы (предоставляет производитель) на общую длину трубы. Но учитывая текущую задачу такие потери можно не учитывать.
  2. Потери напора на местных трубных сопротивлениях – издержки теплоты на фитингах и внутри оборудования. Но учитывая условия задачи, небольшое количество фитинг-изгибов и число радиаторов, такими потерями можно пренебречь.
  3. Теплопотери исходя из расположения квартиры. Существует ещё один тип тепловых издержек, но они больше связаны с расположением помещения относительного остального здания. Для обычной квартиры, которая находиться в средине дома и соседствует слева/справа/сверху/снизу с другими квартирами, тепловые потери через боковые стены, потолок и пол практически равны “0”.

В расчёт можно только взять потери через фасадную часть квартиры – балкон и центральное окно общей комнаты. Но это вопрос закрывается за счёт дополнения 2-3 секций к каждому из радиаторов.

Значение диаметра труб подбирают по расходу теплоносителя и скорости его циркуляции в отопительной магистрали

Анализируя выше изложенную информацию, стоит отметить что для рассчитанной скорости горячей воды в системе отопления известна табличная скорость перемещения частиц воды относительно стенки трубы в горизонтальном положении 0,3-0,7 м/с.

В помощь мастеру представляем так называемый чек-лист проведения вычислений для типичного гидравлического расчёта системы отопления:

  • сбор данных и расчёт мощности котла;
  • объём и скорость теплоносителя;
  • потери теплоты и диаметр труб.

Иногда при просчёте можно получить достаточно большой диаметр трубы, что бы перекрыть расчётный объём теплоносителя. Эту проблему можно решить увеличением литража котла или добавлением дополнительного расширительного бака.

На нашем сайте есть блок статей, посвященных расчету отопительной системы, советуем ознакомиться:

  1. Тепловой расчёт системы отопления: как грамотно сделать расчет нагрузки на систему
  2. Расчет водяного отопления: формулы, правила, примеры выполнения
  3. Теплотехнический расчет здания: специфика и формулы выполнения вычислений + практические примеры

Варианты отопления помещения

Отопление промышленных зданий может быть организовано различными способами

Каждую из систем стоит рассмотреть подробно и детально, принимая во внимание все особенности. Установка оптимального отопительного оборудования позволит не только создать необходимые условия для людей и техники, но и сэкономить финансы заказчика

При подборе оборудования следует обратить внимание на следующие характеристики:

  • размеры помещения;
  • необходимое количество тепловой энергии;
  • доступность ремонта;
  • простота в обслуживании системы.

Выделяют несколько видов систем отопления, которые подходят для помещений с большой площадью:

  • водяное;
  • воздушное;
  • инфракрасное.

Рассмотрим каждый из них более подробно.

Последовательность выполнения гидравлического расчета

1. Выбирается главное циркуляционное кольцо системы отопления (наиболее невыгодно расположенное в гидравлическом отношении). В тупиковых двухтрубных системах это кольцо, проходящее через нижний прибор самого удаленного и нагруженного стояка, в однотрубных – через наиболее удаленный и нагруженный стояк.

Например, в двухтрубной системе отопления с верхней разводкой главное циркуляционное кольцо пройдет от теплового пункта через главный стояк, подающую магистраль, через самый удаленный стояк, отопительный прибор нижнего этажа, обратную магистраль до теплового пункта.

В системах с попутным движением воды в качестве главного принимается кольцо, проходящее через средний наиболее нагруженный стояк.

2. Главное циркуляционное кольцо разбивается на участки (участок характеризуется постоянным расходом воды и одинаковым диаметром). На схеме проставляются номера участков, их длины и тепловые нагрузки. Тепловая нагрузка магистральных участков определяется суммированием тепловых нагрузок, обслуживаемых этими участками. Для выбора диаметра труб используются две величины:

а) заданный расход воды;

б) ориентировочные удельные потери давления на трение в расчетном циркуляционном кольце Rср.

Для расчета Rcp необходимо знать длину главного циркуляционного кольца и расчетное циркуляционное давление.

3. Определяется расчетное циркуляционное давление по формуле

, (5.1)

где— давление, создаваемое насосом, Па. Практика проектирования системы отопления показала, что наиболее целесообразно принять давление насоса, равное

, (5.2)

где

— сумма длин участков главного циркуляционного кольца;

— естественное давление, возникающее при охлаждении воды в приборах, Па, можно определить как

, (5.3)

где— расстояние от центра насоса (элеватора) до центра прибора нижнего этажа, м.

Значение коэффициента можно определить из табл.5.1.

Таблица 5.1 — Значение в зависимости от расчетной температуры воды в системе отопления

(),C

, кг/(м3К)

85-65

0,6

95-70

0,64

105-70

0,66

115-70

0,68

— естественное давление, возникающее в результате охлаждения воды в трубопроводах .

В насосных системах с нижней разводкой величинойможно пренебречь.

  1. Определяются удельные потери давления на трение

, (5.4)

где к=0,65 определяет долю потерь давления на трение.

5. Расход воды на участке определяется по формуле

(5.5)

гдеQ – тепловая нагрузка на участке, Вт:

(tг — tо) – разность температур теплоносителя.

6. По величинамиподбираются стандартные размеры труб .

6. Для выбранных диаметров трубопроводов и расчетных расходов воды определяется скорость движения теплоносителя v и устанавливаются фактические удельные потери давления на трение Rф.

При подборе диаметров на участках с малыми расходами теплоносителя могут быть большие расхождения междуи. Заниженные потерина этих участках компенсируются завышением величинна других участках.

7. Определяются потери давления на трение на расчетном участке, Па:

. (5.6)

Результаты расчета заносят в табл.5.2.

8. Определяются потери давления в местных сопротивлениях, используя или формулу:

, (5.7)

где— сумма коэффициентов местных сопротивлений на расчетном участке .

Значение ξ на каждом участке сводят в табл. 5.3.

Таблица 5.3 — Коэффициенты местных сопротивлений

№ п/п

Наименования участков и местных сопротивлений

Значения коэффициентов местных сопротивлений

Примечания

9. Определяют суммарные потери давления на каждом участке

. (5.8)

10. Определяют суммарные потери давления на трение и в местных сопротивлениях в главном циркуляционном кольце

. (5.9)

11. Сравнивают Δр с Δрр. Суммарные потери давления по кольцу должны быть меньше величины Δрр на

. (5.10)

Запас располагаемого давления необходим на неучтенные в расчете гидравлические сопротивления.

Если условия не выполняются, то необходимо на некоторых участках кольца изменить диаметры труб.

12. После расчета главного циркуляционного кольца производят увязку остальных колец. В каждом новом кольце рассчитывают только дополнительные не общие участки, параллельно соединенные с участками основного кольца.

Невязка потерь давлений на параллельно соединенных участках допускается до 15% при тупиковом движении воды и до 5% – при попутном.

Таблица 5.2 — Результаты гидравлического расчета для системы отопления

На схеме трубопровода

По предварительному расчету

По окончательному расчету

Номер участка

Тепловая нагрузка Q, Вт

Расход теплоносителя G, кг/ч

Длина участка l,м

Диаметрd, мм

Скоростьv, м/с

Удельные потери давления на трение R, Па/м

Потери давления на трение Δртр, Па

Сумма коэффициентов местных сопротивлений∑ξ

Потери давления в местных сопротивлениях Z

d, мм

v, м/с

R, Па/м

Δртр, Па

ξ

Z, Па

Rl+Z, Па

Занятие 6

Гидравлическая увязка

Балансировка перепадов давления в отопительной системе выполняется посредством регулирующей и запорной арматуры.

Гидравлическая увязка системы производится на основании:

  • проектной нагрузки (массового расхода теплоносителя);
  • данных производителей труб по динамическому сопротивлению;
  • количества местных сопротивлений на рассматриваемом участке;
  • технических характеристик арматуры.

Установочные характеристики – перепад давления, крепление, пропускная способность – задаются для каждого клапана. По ним определяют коэффициенты затекания теплоносителя в каждый стояк, а затем – в каждый прибор.

Потери давления прямо пропорциональны квадрату расхода теплоносителя и измеряются в кг/ч, где

S – произведение динамического удельного давления, выраженного в Па/(кг/ч), и приведенного коэффициента для местных сопротивлений участка (ξпр).

Приведенный коэффициент ξпр является суммой всех местных сопротивлений системы.

Точные расчеты тепловой нагрузки

Значение теплопроводности и сопротивление теплопередачи для строительных материалов

Но все же этот расчет оптимальной тепловой нагрузки на отопление не дает требуемую точность вычисления. Он не учитывает важнейший параметр – характеристики здания. Главной из них является сопротивление теплопередачи материал изготовления отдельных элементов дома – стен, окон, потолка и пола. Именно они определяют степень сохранения тепловой энергии, полученной от теплоносителя системы отопления.

Что же такое сопротивление теплопередачи (R)? Это величина, обратная теплопроводности (λ) – возможности структуры материала передавать тепловую энергию. Т.е. чем больше значение теплопроводности – тем выше тепловые потери. Для расчета годовой нагрузки на отопление воспользоваться этой величиной нельзя, так как она не учитывает толщину материала (d). Поэтому специалисты используют параметр сопротивление теплопередачи, который вычисляется по следующей формуле:

R=d/λ

Расчет по стенам и окнам

Сопротивление теплопередачи стен жилых зданий

Существуют нормированные значения сопротивления теплопередачи стен, которые напрямую зависят от региона, где расположен дом.

В отличие от укрупненного расчета нагрузки на отопление сначала нужно вычислить сопротивление теплопередачи для наружных стен, окон, пола первого этажа и чердака. Возьмем за основу следующие характеристики дома:

  • Площадь стен – 280 м². В нее включены окна – 40 м²;
  • Материал изготовления стен – полнотелый кирпич (λ=0.56). Толщина наружных стен – 0,36 м. Исходя из этого рассчитываем сопротивление телепередачи — R=0.36/0.56= 0,64 м²*С/Вт;
  • Для улучшения теплоизоляционных свойств был установлен наружный утеплитель – пенополистирол толщиной 100 мм. Для него λ=0,036. Соответственно R=0,1/0,036= 2,72 м²*С/Вт;
  • Общее значение R для наружных стен равно 0,64+2,72= 3,36 что является очень хорошим показателем теплоизоляции дома;
  • Сопротивление теплопередачи окон — 0,75 м²*С/Вт (двойной стеклопакет с заполнением аргоном).

Фактически тепловые потери через стены составят:

(1/3,36)*240+(1/0.75)*40= 124 Вт при разнице температуры в 1°С

Температурные показатели возьмем такие же, как и для укрупненного вычисления нагрузки на отопление +22°С в помещении и -15°С на улице. Дальнейший расчет необходимо делать по следующей формуле:

124*(22+15)= 4,96 кВт/час

Расчет по вентиляции

Затем необходимо вычислить потери через вентиляцию. Общий объем воздуха в здании составляет 480 м³. При этом его плотность примерно равна 1,24 кг/м³. Т.е. его масса равна 595 кг. В среднем за сутки (24 часа) происходит пятикратное обновление воздуха. В таком случае для вычисления максимальной часовой нагрузки для отопления нужно рассчитать тепловые потери на вентиляцию:

(480*40*5)/24= 4000 кДж или 1,11 кВт/час

Суммируя все полученные показатели можно найти общие тепловые потери дом:

4,96+1,11=6,07 кВт/час

Таким образом определяется точная максимальная тепловая нагрузка на отопление. Полученная величина напрямую зависит от температуры на улице. Поэтому для расчета годовой нагрузки на отопительную систему нужно учитывать изменение погодных условий. Если средняя температура в течение отопительного сезона составляет -7°С, то итоговая нагрузка на отопление будет равна:

(124*(22+7)+((480*(22+7)*5)/24))/3600)*24*150(дней отопительного сезона)=15843 кВт

Меняя температурные значения можно сделать точный расчет тепловой нагрузки для любой системы отопления.

Полученная величина указывает на фактические затраты энергоносителя при работе системы. Существует несколько способов регулирования тепловой нагрузки отопления. Наиболее действенный из них – уменьшение температуры в комнатах, где нет постоянного присутствия жильцов. Это можно осуществить с помощью терморегуляторов и установленных датчиков температуры. Но при этом в здании должна быть установлена двухтрубная система отопления.

Для вычисления точного значения тепловых потерь можно воспользоваться специализированной программой Valtec. В видеоматериале показа пример работы с ней.

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий