Как подобрать драйвер светодиодной лампы: виды, назначение + особенности подключения

Светодиодные ленты — подключение от блока питания или драйвера?

Отдельный вопрос это светодиодные ленты. Для них вовсе не нужны драйвера, и как известно они подключаются от привычных нам блоков питания 12-36 Вольт.

Казалось бы в чем подвох? Там же тоже стоят светодиоды.

А дело в том, что драйвер уже автоматически присутствует в самой ленте.

Все вы видели на светодиодных лентах впаянные сопротивления (резисторы).

Они как раз таки и отвечают за ограничение тока до номинальной величины. Одно сопротивление устанавливается на три последовательно подключенных светодиода.

Такие участки ленты, рассчитанные на напряжение 12 Вольт называют кластерами. Эти отдельные кластеры на всем протяжении ленты подключены между собой в параллель.

И именно благодаря такому параллельному соединению, на все светодиоды подается одинаковое напряжение 12В. Благодаря кластеризации при монтаже низковольтной ленты, ее спокойно можно отрезать на мелкие кусочки, состоящие минимум из 3-х светодиодов.

Казалось бы, решение найдено и где здесь недостаток? А главный недостаток такого устройства – эти резисторы не проделывают никакой полезной работы.

Они лишь дополнительно нагревают окружающее пространство и сам светодиод возле него. Именно поэтому светодиодные ленты не светят так ярко, как нам хотелось бы. Вследствие чего, их используют лишь как дополнительный свет интерьера.

Сравните 60-70 люмен/ватт у светодиодных лент, против 120-140 лм/вт у светильников и решений на основе драйверов.

Возникает вопрос, а можно ли найти ленту без сопротивлений и подключить к ней драйвер отдельно? Да, такие устройства например применяют в светодиодных панелях.

Их часто монтируют в подвесном потолке и не только. Применяются они без сопротивлений. Еще их называют токовыми светодиодными линейками.

Именно токовыми. Здесь все отдельные участки линеек подключаются последовательно на один драйвер. И все прекрасно работает.

https://youtube.com/watch?v=DMlBMcQPvtM

Принцип работы и устройство ламп.

Конструкция LED лампы.

Светодиодный источник света состоит из нескольких элементов, соединенных в одном корпусе. Это цоколь, драйвер, радиатор, светодиод и светорассеивающая колба.

  • Цоколь – элемент, который вкручивается в патрон люстры или другого светильника. Чаще всего для бытового применения выпускают винтовой цоколь типа Е27 и Е14. Он изготовлен из латуни с никелевым антикоррозийным покрытием. Для других нужд выпускаются источники света со штырьковым цоколем.
  • Драйвер – элемент, который стабилизирует поступающее напряжение, преобразуя переменный ток в постоянный. Также он обеспечивает питание светодиода. Драйвер состоит из микросхем, импульсного трансформатора, конденсаторов. В недорогих LED изделиях драйвер может отсутствовать. Вместо него применятся простой блок питания, не обеспечивающий стабилизации тока и напряжения. Также драйвер не устанавливают в миниатюрных лампочках из-за нехватки места внутри корпуса.
  • Радиатор – элемент, который отводит тепло от светодиодов и обеспечивает для них оптимальный температурный режим работы. Обычно он составляет видимую часть корпуса осветительного прибора. Радиатор может изготавливаться из различных материалов: от дорогой керамики до дешевого пластика. Алюминиевые и композитные материалы занимают среднюю нишу: они достаточно бюджетны и качественно отводят тепло.
  • Рассеиватель – прозрачный «колпак», который помогает распределять свет в пространстве. Изготавливается в виде полусферы для рассеивания пучков света под широким углом. В качестве материала применяют поликарбонат или пластик. Кроме этого рассеиватель предотвращает попадание внутрь корпуса пыли и влаги. Для смягчения резкости света и уменьшения раздражающего влияния на глаза этот элемент изнутри покрывают люминофором. При этом достигается цветовая температура, аналогичная естественному освещению.
  • Светодиоды – главный рабочий элемент лампы. За счет работы диода и появляется свечение.

Принцип работы светодиодных ламп основан на физических процессах в полупроводниках. Свечение появляется после прохождения электрического тока через границу соприкосновения двух полупроводников (n и p), в одном из которых должны преобладать отрицательно заряженные электроны, а в другом – положительно заряженные ионы. Стоит отметить, что данные материалы пропускают ток только в одну сторону. При его прохождении в носители заряда осуществляют рекомбинацию – электроны переходят на другой энергетический уровень. В результате появляется видимое глазу световое излучение. Кроме свечения происходит еще и выделение тепла, которое отводится от светодиода при помощи радиатора.

Схема появления оптического излучения в LED-элементе.

На заре появления светодиоды могли испускать только определенную световую волну: зеленую, красную или желтую. Поэтому LED-элементы встраивались в электрические схемы в виде индикаторов. В процессе развития микроэлектроники были найдены материалы, позволяющие получить световую волну широкого спектра. Однако полностью эта проблема не решена: в свечении светодиодных ламп преобладает или синяя длина волны или красная с желтым.  По этой причине они и делятся на холодные и теплые соответственно.

Как подобрать

Правильный подбор led-driver для питания светодиода должен учитывать следующие параметры:

  • Значение напряжения на входе.
  • Величину выходного напряжения.
  • Ток на выходе.
  • Выходную мощность.
  • Влаго- и пылезащиту.

Основной принцип правильного выбора драйвера для светодиода – начинать расчет его характеристик только после того, как будет точно известно количество источников света и их основных параметров (прежде всего мощности) в планируемой схеме. Кроме того, необходимо заранее знать условия эксплуатации электрооборудования – в помещении или на улице, каковы параметры колебания температуры и влажности, а также действие атмосферных осадков.

Далее нужно правильно рассчитать выходные параметры для led-driver. Прежде всего это напряжение. Подсчитывается следующим образом – необходимо суммировать значение всех лед-элементов в цепочке. Например, если в схеме 5 диодов по 3 вольта, в сумме получится 5х3=15 вольт. При этом нужно учесть, что соединение светильников будет последовательное. Во входных характеристиках есть еще одна величина – сила тока. Она будет одинакова для всех ламп.

Например, если ее значение 500 мА для каждого диода, то led-driver должен обладать выходным параметрами – 15 В и 0,5 А. Что касается силы тока, то она должна быть либо равна расчетной, либо ниже. Если будет выше, то лампы быстро (если не сразу после включения) сгорят. Также потребуется рассчитать и мощность. Для этого нужно перемножить выходное напряжение на силу тока – 15х0,5=7,5 Вт. Причем лучше будет, если мощность драйвера будет немного выше на 20% расчетного значения.

Получается, требуется led-driver на 9 Вт, 15 В и 0,5 А. Место размещения драйвера имеет большое влияние на его внешний вид. Устройство может быть с защитным корпусом и без. Последний ставят внутрь ламп с надежной оболочкой. Если же требуется хорошая влаго- и пылестойкость, то лучше приобретать модели первого типа.

При сборке схемы с лэд-драйвером своими руками для подсветки необходимо покупать только однотипные светодиоды из одной партии. В противном случае они могут иметь существенный разброс характеристик, что приведет к неравномерному их свечению и быстрому выходу из строя элементов, работающих на пределе.

Как проверить драйвер светодиодной лампы

Проверить работу драйвера светодиода можно подключив светильник к сети. Надо только убедиться в исправности осветительного прибора и отсутствии пульсаций.

Существует способ проверить драйвер и без светодиода. На него подается 220 В и измеряются показатели на выходе. Показатель должен быть постоянным, по значению немного больше указанного на блоке. Например указанные на блоке значения 28-38 В обозначают выходное напряжение без нагрузки около 40 В.

Рисунок 8. Проверка исправности светодиода.

Описанный способ проверки не дает полного представления об исправности драйвера. Нередко приходится сталкиваться с исправными блоками, которые не включаются вхолостую или же работают нестабильно без нагрузки. Выходом представляется подключение к прибору специального загрузочного резистора. Выбрать сопротивление резистора можно по закону Ома с учетом указанных на блоке показателей.

Диммируемые драйверы для светодиодов

Современные драйверы для светодиодов совместимы с устройствами регулирования яркости свечения полупроводниковых приборов. Использование диммируемых драйверов позволяет управлять уровнем освещенности в помещениях: снижать интенсивность свечения в дневное время, подчеркивать или скрывать отдельные элементы в интерьере, зонировать пространство. Это, в свою очередь, дает возможность не только рационально использовать электроэнергию, но и экономить ресурс светодиодного источника света.

Диммируемые драйверы бывают двух типов. Одни подсоединяются между блоком питания и LED-источниками. Такие устройства управляют энергией, поступающей от источника питания к светодиодам. В основе таких устройств используется ШИМ-управление, при котором энергия поступает к нагрузке в виде импульсов. Длительность импульсов определяет количество энергии от минимального до максимального значения. Драйверы такого типа применяются по большей части для светодиодных модулей с фиксированным напряжением, таких как светодиодные ленты, бегущие строки и др.

Управление драйвером осуществляется с помощью диммера или ШИМ

Диммируемые преобразователи второго типа управляют непосредственно источником питания. Принцип их работы заключается как в ШИМ-регулировании, так и в управлении величиной протекающего через светодиоды тока. Диммируемые драйверы этого типа используются для LED-приборов со стабилизированным током. Стоит отметить, что при управлении светодиодами посредством ШИМ-регулирования наблюдаются негативно влияющие на зрение эффекты.

Сравнивая эти два метода регулирования, стоит отметить, что при регулировании величины тока через LED-источники наблюдается не только изменение яркости свечения, но и изменение цвета свечения. Так, белые светодиоды при меньшем токе излучают желтоватый свет, а при увеличении – светятся синим. При управлении светодиодами посредством ШИМ-регулирования наблюдаются негативно влияющие на зрение эффекты и высокий уровень электромагнитных помех. В связи с этим ШИМ-управление используется достаточно редко в отличие от регулирования тока.

Изготовление драйвера для светодиодов своими руками

Если в наличии пользователя есть несколько полупроводниковых кристаллов или линейка подсветки из старого телевизора, он может самостоятельно сделать источник тока для них.

Для этого следует приобрести приборы и детали или выпаять радиоэлементы из старой аппаратуры. Часто КПД устройств, сделанных своими руками, намного выше, чем у промышленных образцов.

Материалы и инструменты для работы

Для самодельного простого драйвера потребуются:

  • конденсаторы: простой 0,27 мкф на 400 V и 2 электролитических 500×16 V и 100×16 V;
  • резистор 500 кОм на 0,5 W;
  • 4 диода или готовый мост на 220 V;
  • микросхема LM317;
  • паяльник мощностью 20-40 Вт;
  • флюс и припой (желательно типа ПОС);
  • пассатижи, кусачки, плоскогубцы;.
  • многожильные изолированные проводники из меди сечением 0,35-1 мм²;
  • трубка термоусадочная;
  • мультиметр или тестер;
  • изолента;
  • плата для распайки элементов.

Схемы простого драйвера для светодиода 1 Вт и мощного

Классический преобразователь представляет собой сочетание электронного делителя напряжения и микросхемы-стабилизатора. Первый узел состоит из 2 элементов (конденсатора 0,27 мкф и резистора 500 кОм), соединенных параллельно, к которым последовательно подключен мост из диодов, выдерживающих входное напряжение.

В качестве стабилизатора часто применяют микросхему L7812, но это не совсем правильное решение. Она является линейным устройством, регулирующим напряжение, и при изменении тока может сгореть.

Схема подключения

Лучше воспользоваться микросхемами LM317, LM338 или LM350, у которых есть защита от КЗ и перегрева. Питать их можно любым напряжением 5-35 V. К драйверу можно подсоединить 5-10 светодиодов.

Схема подключения проста:

  • плюс делителя идет на вход микросхемы (1 вывод);
  • общий провод через анод светодиода идет на минус радиодетали (среднюю ножку);
  • туда же через резистор, ограничивающий ток, подключен выход LM317 (3 контакт).

Установив вместо последнего элемента регулируемое сопротивление, можно изменять силу тока, т. е. яркость светодиодов в некоторых пределах.

Если нужно соорудить мощный прожектор, то драйвер придется модифицировать:

  • необходимо поднять питающее напряжение до 24 V;
  • установить стабилизатор с наибольшим током, а из предложенных микросхем только LM338 может выдавать 5А.

Ввиду большой силы тока следует установить ее на радиатор.

Как собрать и настроить драйвер?

В простом преобразователе для светодиодов мало элементов. Драйвер можно собрать на специальной плате, куске фанеры или провести навесной монтаж.

Устройство не требует наладки, если взять все указанные детали. Главное – правильно рассчитать резистор, ограничивающий ток.

Как изготовить драйвер для светодиодов своими руками

Для работы требуется:

  • маломощный
    паяльник (25-40 Вт);
  • флюс
    (желательно нейтральный);
  • оловянно-свинцовый
    припой;
  • кусачки
    и пласкогубцы;
  • многожильные
    медные провода в изоляции с сечением 0,35-1 м2;
  • изолента
    (термоусадочная трубка);
  • мультиметр;
  • печатная
    плата.

Перечень компонентов зависит от того,
какой блок питания необходимо сделать.

Пример
расчета

Самая простая схема для подключения
светодиодов к источникам с низким напряжением. Прежде всего, рассчитывается
мощность блока, базируясь на параметры источников света. Вольтаж должен быть на
20-30% выше показателя подключаемой лампочки или ленты. На выходе напряжение
зависит от падения вольтажа на светодиоде.

Если нужно подключить 6 светодиодов, падение напряжения в которых 2 В (на каждом), требуется блок на 12 В и 300 мА при последовательном размещении. Чтобы подключить те же элементов в 2 параллельные линии, необходимы другие показатели – напряжение 6 В, ток 600 мА. Для таких диодов подойдет простой драйвер, состоящий из диодного моста, 2-х конденсаторов и резистора.

Диодный мост состоит из 4-х
разнонаправленные диодов, задача которых – превратить синусоидальный переменный
электроток в пульсирующий. К плюсу моста (со стороны входа) присоединяется пленочный
конденсатор, к минусу – сопротивление, параллельно –электролитический конденсатор
(для сглаживания перепадов напряжения). Значение электротока зависит от метода подключения
(если диодов несколько, их можно соединить последовательно или параллельно).

Для мощного
светодиода (например, 3Вт) подойдет стабилизатор-драйвер,
созданный на основе микросхемы LM317
и резистора. У стабилизатора LM317 постоянный вольтаж 1,25. Если лампа новая,
ей требуется ток 700 мА (максимальное значение). Чтобы рассчитать сопротивление
резистора, нужно напряжение разделить на ток:

1,25/0,7 = 1,78 Ом.

Такого резистора нет, поэтому нужно
купить элемент на 1,8 Ом.

Так как микросхема LM317 предназначена
для тока до 1,5 А, потребуется радиатор.

Драйвер для трех led по 1 Втможно
сделать из зарядного устройства мобильного телефона, если немного
усовершенствовать микросхему. Нужно снять корпус и выпаять имеющийся резистор и
припаять другой (на 5 кОм). Светодиоды соединить последовательно и подключить к
выходному каналу. Входные каналы заменить шнуром для присоединения к сети.

Для светодиодного источника с мощностью 10 Вт можно собрать блок питания на электронной плате люминесцентной лампы на 20 Вт. Купить нужно дроссели, диоды, конденсаторы и транзисторы.

Важные нюансы сборки

Падение напряжения на светодиодах 3-30 В.
Это очень мало, если сравнивать с вольтажом сети. Готовые микросхемы отличаются
только показателями входного напряжения. При выборе необходимо учесть, что
падения напряжения на источниках света должно составлять 10-20% от вольтажа драйвера.
Поэтому не стоит делать на основе микросхемы блок для подключения к сети, если
имеется 1 или 2 диода на 3-6 В.

Все элементы на плате размещаются так, чтобы между ними было минимальное расстояние и количество перемычек. Полярность и распиновку лучше проверить в технической документации. Если элементы не новые, обязательна проверка мультиметром. Паяльник лучше выбрать небольшой, способный нагреваться до 260оС.

Конденсаторы, резисторы, диоды,
микросхемы паять достаточно сложно, если их нельзя предварительно закрепить на
плате. Чтобы повысить качество пайки, желательно залудить места, куда будут
ставиться компоненты. Для этого капается немного флюса, на паяльник берется
припой и наносится на то же место.

Каждый элемент нужно брать пинцетом за
ножку, которую нужно припаять, и приставить к месту пайки. Потом на ножку
наносится капля флюса, берется паяльник и подносится к припаиваемой ножке.
Прикоснуться достаточно примерно на секунду, так как припой и флюс уже есть.
Ножка сразу погружается в припой, нанесенный в процессе лужения.

Если элементы можно закрепить на плате,
припой должен быть с флюсом. В одну руку нужно взять паяльник, в другую –
проволоку. Место пайки греется 3-4 секунды, потом к нему подносится припой. При
соприкосновении элемента, паяльника и проволоки последняя плавится, флюс
вытекает, через секунду паяльник можно убрать.

Одновременно с паяльником желательно купить специальный отсос и очки. Если случится, что элемент припаялся не туда или на месте пайки образовался огромный бугор, нужно разогреть припой, взять отсос и нажать на кнопку. Все лишнее с платы моментально исчезнет. При работе с проводами и ножками элементов они могут отпружинить. Чтобы горячий припой не попал в глаза, работать желательно в очках.

Принципиальная разница в конструкции

При выборе светодиодных лампочек важно знать, как они производились. Продукция должна быть сертифицированная. Только так можно купить светодиодный источник света, который не будет отрицательно воздействовать на организм и прослужит долго

Только так можно купить светодиодный источник света, который не будет отрицательно воздействовать на организм и прослужит долго.

Недорогой китайской лампы на 220 В

Неизвестные китайские производители:

  • выпускают светодиодные лампы в несоответствующих мощности корпусах;
  • у диодов низкие показатели светопередачи;
  • полноценный драйвер меняют на диодный мост и пару дешевых радиодеталей;
  • устанавливают примитивные теплоотводы;
  • указывают на упаковке неверные параметры мощности, потока и цвета света, срока эксплуатации.

Из-за несовершенства схемы такие лампы быстро перегорают, покупателей ждет разочарование после вскрытия упаковки:

  • источник света вместо 60 Вт выдает 25 Вт;
  • поток света 40-50%, не 90%, как указано;
  • мощность 6 Вт вместо 8 Вт;
  • цвет 400 вместо 2700;
  • рок службы 5 тыс. часов, а не 50 тыс.

Качественной брендовой светодиодной лампы

В брендовой качественной лампочке:

  • используется рассеиватель в виде полусферы из качественного пластика, увеличивающий угол рассеивания и показатели механической прочности;
  • качественные долговечные чипы;
  • применяется плата, изготовленная из сплава алюминия, эффективно отводящая избыток тепла на радиатор;
  • площади радиатора достаточно для того, чтобы предотвратить перегрев;
  • у конденсатора достаточный объем;
  • драйвер преобразует ток;
  • цоколь из никеля или латуни.

Виды драйверов.

По типу их можно подразделить на:

Линейные. Они наиболее подходящие, если входное напряжение не стабильно. Отличаются улучшенной стабилизацией. Распространены мало по причине низкого КПД. Выделяет большее количество тепла, подходит для маломощной нагрузки.

Внутреннее устройство драйвера

Внешний вид и схема драйвера LED 1338G7.

Импульсные. Основаны на микросхемах ШИМ. Обладают высоким КПД. Отличаются малым нагревом и длительным сроком службы.

ШИМ-драйвер Recom.

Микросхемы ШИМ создают значительный уровень электромагнитных помех. Людям с кардиостимуляторами не рекомендовано находится в помещениях, где применяются такие драйвера для питания светодиодов.

Драйвер, работающий с диммером. Принцип основан на использовании ШИМ-контроллера. Принцип состоит в том, что регулируется сила тока на светодиодах. Низкокачественные изделия дают эффект мерцания.

Драйвер с диммером.

LED драйвер на 220 В.

Существует немало уже готовых светодиодных драйверов промышленного производства. Естественно, они обладаю различными характеристиками. Их особенность в том, что они питаются от сети 220 В переменного напряжения и могут работать в широком диапазоне питающего напряжения. Задача, у них все та же. Выдать определенную силу тока. Многие промышленные изделия уже имеют гальваническую развязку. Гальваническая развязка предназначена для передачи электроэнергии без непосредственного соединения входной и выходной частей схемы. Это дополнительные очки в плане электробезопасности (простейшей и исторически первой гальванической развязкой считается обычный трансформатор). Обычно они имеют нестабильность не более 3 %. В подавляющем большинстве сохраняют работоспособность от 90-100 Вольт и до 260 Вольт. В магазинах очень часто их могут называть:

  • блок питания (БП),
  • источник тока,
  • адаптер питания,
  • источник питания.

Это все одно и тоже устройство. Продавцы не обязаны обладать техническим образованием.

Как подобрать драйвер (блок питания) для светодиодов

Полезные ссылки:

  • Комплектующие для сборки самодельных фитоламп
  • Фото и видео примеры самодельных фитоламп для растений

У каждого диода, в свою очередь, в описании указано падение напряжения при разных токах. Например, для красного диода 660 нм при токе 600 мА оно составит 2,5 В:

Количество диодов, которое можно подключить на драйвер, суммарным падением напряжения должно укладываться в пределы выходного напряжения драйвера. То есть на драйвер 50Вт 600 мА с выходным напряжением 60-83 В можно подключить от 24 до 33 красных диодов 660 нм. (То есть 2,5*24 = 60, 2,5*33 = 82,5).

Другой пример: Хотим собрать биколорную лампу красный + синий. Выбрали соотношение красного к синему 3:1 и хотим рассчитать, какой драйвер нужно взять для 42 красных и 14 синих диодов. Считаем: 42*2,5 + 14*3,5 = 154 В. Значит, нам потребуется два драйвера 50 Вт 600 мА, на каждый будет приходиться 21 красных и 7 синих диодов, суммарное падение напряжения на каждом получится по 77 В, что попадает в его выходное напряжение.

Теперь несколько важных пояснений:

1) Не стоит искать драйвер мощностью более 50 Вт: они есть, но они менее эффективны, чем аналогичный набор драйверов меньшей мощности. Более того, они будут сильно греться, что потребует от Вас дополнительных расходов на более мощное охлаждение. Кроме тго, драйвера мощностью более 50Вт как правило сильно дороже, например драйвер на 100Вт может быть дороже чем 2 драйвера по 50Вт. Поэтому гнаться за ними не стоит. Да и надежнее когда цепи светодиодов разделены на секции, если вдруг что-то перегорит — то сгорит не все а только чать. Поэтому выгодно разделять на несколько драйверов, а не стремиться все повесить на один. Вывод: 50Вт — оптимальный вариант, не больше.

2) Ток у драйверов бывает разный: 300 мА, 600 мА, 750 мА — это ходовые. Других вариантов довольно много. По большому счету, более эффективным с точки зрения КПД на 1 Вт будет использование драйвера на 300 мА, также он не будет сильно нагружать светодиоды, и они будут меньше греться и дольше прослужат. Но главный минус таких драйверов, что диоды будут работать «вполсилы», и поэтому их потребуется примерно в два раза больше, чем для аналога с 600 мА. Драйвер с током 750 мА будет питать диоды на пределе возможностей, поэтому диоды будут очень сильно греться, и им потребуется очень мощное, хорошо продуманное охлаждение. Но даже несмотря на это, они в любом случае деградируют от перегрева раньше среднего срока «жизни» светодиодных ламп работающих например на 500-600 мА токе. Поэтому мы рекомендуем использовать драйверы с током 600 мА. Они получаются самым оптимальным решением с точки зрения соотношения цена-эффективность-срок службы.

3) Мощность диодов указывается номинальная, то есть максимально возможная. Но на максимум они никогда не запитываются (почему — см. п.2). Реальную мощность диода рассчитать очень просто: необходимо ток используемого драйвера умножить на падение напряжения диода. Например, при подключении драйвера на 600 mA к красному диоду 660 нм мы получим реальное напряжение на диоде: 0,6(А) * 2,5(В) = 1,5 Вт.

Правила подбора преобразователя тока

Для приобретения преобразователя LED лампы следует изучить ключевые характеристики прибора. Опираться стоит на выходное напряжение, номинальный ток и выдаваемую мощность.

Мощность световых диодов

Разберем изначально выходное напряжение, которое подчинено нескольким фактором:

  • значение потерь напряжения на P-N переходах кристаллов;
  • количество световых диодов в цепочке;
  • схема подключения.

Параметры номинального тока можно определить по характерным особенностям потребителя, а именно мощности LED элементов и степени их яркости.

Этот показатель будет влиять на потребляемый кристаллами ток, диапазон которого варьируется исходя из необходимой яркости. Задача преобразователя — обеспечить этим элементам подачу нужного количества энергии.

Мощность устройства зависит от силы каждого LED элемента, их цвета и количества.

Для просчета потребляемой энергии используют такую формулу:

PH = PLED * N,

Где

  • PLED – электрическая нагрузка, создаваемая одним диодом,
  • N – количество кристаллов в цепи.

Полученные показатели не должны быть меньше мощности драйвера. Теперь необходимо определить требуемое номинальное значение.

Максимальная мощность прибора

Следует учитывать и тот факт, что для обеспечения стабильной работы преобразователя его номинальные показатели должны превышать на 20-30 % полученное значение PH.

Таким образом формула приобретает вид:

Pmax ≥ (1,2..1,3) * PH,

где Pmax — номинальная мощность блока питания.

Помимо мощности и количества потребителей на плате, сила нагрузки также подчинена цветовым факторам потребителя. При одинаковом токе, в зависимости от оттенка, они имеют разные показатели падения напряжения.

Возьмем для примера, светодиоды американской фирмы Cree из линейки XP-E в красном цвете.

Их характеристики выглядят следующим образом:

  • падение напряжения 1,9-2,4 В;
  • ток 350 мА;
  • средняя мощность потребления 750 мВт.

Аналог зеленого цвета при том же токе, будет иметь совсем другие показатели: потери на P-N переходах 3,3-3,9 В, а мощность 1,25 Вт.

Соответственно можно сделать выводы: драйвер, рассчитанный на 10 Вт, применяется для питания двенадцати красных кристаллов или восьми зеленых.

Схема подключения светодиодов

Выбор драйвера должен осуществляться после определения схемы подключения LED-потребителей. Если в первую очередь приобрести световые диоды, а затем подбирать к ним преобразователь, этот процесс будет сопровождаться массой сложностей.

Для поиска устройства, обеспечивающего работу именно такого количества потребителей при заданной схеме подключения, придется потратить немало времени.

Приведем пример с шестью потребителями. Потери напряжения у них составляют 3 В, потребляемый ток 300 мА. Для их подключения можно использовать один из методов, при этом в каждом отдельном случае требуемые параметры блока питания будут отличаться.

В нашем случае при последовательном подключении необходим блок на 18 В с током 300 мА. Основной плюс такого способа в том, что через всю линию проходит одинаковая сила, соответственно, все диоды горят с идентичной яркостью.

Если применено параллельное размещение – достаточно использовать преобразователь на 9 В, однако значения затрачиваемого тока будет увеличено вдвое, в сравнении с предыдущим методом.

Если используется последовательный метод с формированием пар по два светодиода, используется драйвер с аналогичными показателями, как в предыдущем случае. При этом яркость освещения будет уже равномерной.

Однако и здесь не обошлось без отрицательных нюансов: при подаче питания к группе, вследствие разброса характеристик один из светодиодов может открываться быстрее второго, соответственно, через него и пойдет ток, вдвойне превышающий номинальное значение.

Многие виды светодиодок для домашнего освещения рассчитаны на подобные краткосрочные скачки, но такой метод относится к менее востребованным.

Отличительные хаpaктеристики

В работе драйвера, подключаемого в схему
светодиодных светильников, первоочередное место занимают три параметра:

  1. Мощность.
  2. Ток
    номинальный.
  3. Напряжение
    выходное.

Значение мощности на модуле всегда указывается в
диапазоне значений. При подборе его для конкретной системы освещения его
максимальное значение должно быть выше на 20-30% суммарного аналогичного
показателя для всех лед-элементов. Номинальный ток драйвера должен быть таким
же, как и у светильника. От этого будет напрямую зависеть яркость свечения led-кристаллов.
Выходное напряжение равняется сумме падения этого параметра для каждой
конкретной светодиодной лампочки в цепи и зависит от способа их подключения.

Помимо этого, существует ряд факторов, оказывающих
прямое влияние на работу драйвера для схемы светодиодных светильников с любыми
параметрами. Это такие аспекты, как:

  1. Наивысшее и наименьшее значение хаpaктеристик на входе и выходе.
  2. Уровень защиты от пыли и влаги.
  3. Материалы и компоненты в составе.
  4. Фирма-изготовитель.

Принцип работы блока питания

Разберемся, в чем же состоят различия между источником напряжения и блоком питания. В качестве примера рассмотрим схему, изображенную ниже.

Подключив к источнику питания 12 В резистор на 40 Ом, через него будет проходить ток в 300 мА (рисунок А). При параллельном включении в цепь второго резистора значение тока составит – 600 мА (Б). Однако напряжение будет неизменным.

Теперь рассмотрим, как изменятся значения, если в схеме будут подключены резисторы к блоку питания. Аналогичным образом вводим реостат 40 Ом с драйвером 300 мА. Последний создает на нем напряжение в 12 В (схема В).

Если же цепь составлена из двух резисторов, то величина тока неизменна, а напряжение составит 6 В (Г).

Делая выводы, можно сказать, что качественный преобразователь поставляет нагрузке номинальный ток даже при падении напряжения. Соответственно, кристаллы диодов на 2 В или на 3 В и током на 300 мА будут гореть одинаково ярко со сниженным напряжением.

Поделитесь в социальных сетях:FacebookTwitterВКонтакте
Напишите комментарий