Цветная фотография
Если раньше всё происходящее стремилось попасть на бумагу, то теперь вся жизнь направлена на получение фотографии. Поэтому без этого изобретения, ставшего частью маленькой, но насыщенной истории фотографии, мы бы не увидели такой “реальности”. Сергей Михайлович Прокудин-Горский разработал особую фотокамеру и представил своё детище миру в 1902 году. Эта камера была способна делать три снимка одного и того же изображения, каждый из которых пропускался сквозь три совершенно разных световых фильтра: красный, зеленый и синий. А патент, полученный изобретателем в 1905 году, можно без преувеличения считать началом эры цветной фотографии в России. Это изобретение становится намного качественнее наработок зарубежных химиков, что является важным фактом ввиду массового интереса к фотографии по всему миру.
1.1 Домеханический период
1.1.1. Счет на пальцах
Счет на пальцах, несомненно, самый древний и наиболее простой способ вычисления. Обнаруженная в раскопках так называемая “вестоницкая кость” с зарубками, оставленная древнем человеком ещё 30 тыс. лет до нашей эры, позволяет историкам предположить, что уже тогда предки современного человека были знакомы с зачатками счета. У многих народов пальцы рук остаются инструментом счета и на более высоких ступенях развития. К числу этих народов принадлежали и греки, сохраняющие счет на пальцах в качестве практического средства очень долгое время.
1.1.2. Счет на камнях
Чтобы сделать процесс счета более удобным, первобытный человек начал использовать вместо пальцев небольшие камни. Он складывал из камней пирамиду и определял, сколько в ней камней, но если число велико, то подсчитать количество камней на глаз трудно. Поэтому он стал складывать из камней более мелкие пирамиды одинаковой величины, а из-за того что на руках десять пальцев, то пирамиду составляли именно десять камней.
1.1.3. Счет на Абаке
Во времена древнейших культур человеку приходилось решать задачи, связанные с торговыми расчетами, с исчислением времени, с определением площади земельных участков и т.д. Рост объемов этих расчетов приводили даже к тому, что из одной страны в другую приглашались специально обученные люди, хорошо владевшие техникой арифметического счета. Поэтому рано или поздно должны были появиться устройства, облегчающие выполнение повседневных расчетов.
Так в Древней Греции и в Древнем Риме были созданы приспособления для счета, называемые абак (от греческого слова abakion – “дощечка, покрытая пылью”). Абак называют также римскими счетами. Вычисления на них проводились путем перемещения счетных костей и камешков (калькулей) в полосковых углублениях досок из бронзы, камня, слоновой кости, цветного стекла. В своей примитивной форме абак представлял собой дощечку (позднее он принял вид доски, разделенной на колонки перегородками). На ней проводились линии, разделявшие ее на колонки, а камешки раскладывались в эти колонки по тому же позиционному принципу, по которому кладется число на наши счеты. Эти счеты сохранились до эпохи Возрождения.
В странах Древнего Востока (Китай, Япония, Индокитай) существовали китайские счеты. На каждой нити или проволоке в этих счетах имелось по пять и по две костяшки. Счет осуществлялся единицами и пятерками.
В России для арифметических вычислений применялись русские счеты, появившиеся в 16 веке, но кое-где счеты можно встретить и сегодня.
1.1.4. Палочки Непера
Первым устройством для выполнения умножения был набор деревянных брусков, известных как палочки Непера. Они были изобретены шотландцем Джоном Непером (1550-1617гг.). На таком наборе из деревянных брусков была размещена таблица умножения. Кроме того, Джон Непер изобрел логарифмы.
1.1.5. Логарифмическая линейка
Развитие приспособлений для счета шло в ногу с достижениями математики. Вскоре после открытия логарифмов в 1623 г. была изобретена логарифмическая линейка.
В 1654 г. Роберт Биссакар, а в 1657 г. независимо С. Патридж (Англия) разработали прямоугольную логарифмическую линейку – это счетный инструмент для упрощения вычислений, с помощью которого операции над числами заменяются операциями над логарифмами этих чисел. Конструкция линейки сохранилась в основном до наших дней.
Логарифмической линейки была суждена долгая жизнь: от 17 века до нашего времени. Вычисления с помощью логарифмической линейки производятся просто, быстро, но приближенно. И, следовательно, она не годится для точных, например финансовых, расчетов.
ЭВМ пятого поколения
Они будут основаны на принципиально новой элементной базе. Основным их качеством должен быть высокий интеллектуальный уровень, в частности, распознавание речи, образов. Это требует перехода от традиционной фон-неймановской архитектуры компьютера к архитектурам, учитывающим требования задач создания искусственного интеллекта.
Таким образом, для компьютерной грамотности необходимо понимать, что на данный момент создано четыре поколения ЭВМ:
- 1-ое поколение: 1946 г. создание машины ЭНИАК на электронных лампах.
- 2-ое поколение: 60-е годы. ЭВМ построены на транзисторах.
- 3-ье поколение: 70-е годы. ЭВМ построены на интегральных микросхемах (ИС).
- 4-ое поколение: Начало создаваться с 1971 г. с изобретением микропроцессора (МП). Построены на основе больших интегральных схем (БИС) и сверх БИС (СБИС).
Пятое поколение ЭВМ строится по принципу человеческого мозга, управляется голосом. Соответственно, предполагается применение принципиально новых технологий. Огромные усилия были предприняты Японией в разработке компьютера 5-го поколения с искусственным интеллектом, но успеха они пока не добились.
Фирма IBM тоже не намерена сдавать свои позиции мирового лидера, например, Японии. Мировая гонка за создание компьютера пятого поколения началась еще в 1981 году. С тех пор еще никто не достиг финиша. Поживем – увидим.
P.S. Статья закончилась, но можно еще прочитать:
1. Аналитическая машина Бэббиджа
2. Леди Ада Лавлейс и первая компьютерная программа
3. Может ли компьютер быть умнее человека?
4. Пять возможностей сотовых телефонов, которых не хватает в наши дни
5. Виртуальная интерактивность: что такое VR, MR, AR и их отличия
Распечатать статью
Получайте актуальные статьи по компьютерной грамотности прямо на ваш почтовый ящик. Уже более 3.000 подписчиков
.
Важно: необходимо подтвердить свою подписку! В своей почте откройте письмо для активации и кликните по указанной там ссылке. Если письма нет, проверьте папку Спам
Новое время: золотой век автоматонов
Однако настоящую популярность и бурное развитие автоматические механизмы получили с началом эпохи Возрождения. Наука, вырвавшись из монополии Церкви, получила дополнительный импульс к развитию, в том числе за счет переосмысления достижения античных ученых. И на первую роль в новой волне старинной робототехники вышли часовщики. Здесь стоит упомянуть о двух важных изобретениях, которые способствовали развитию технологии автоматонов – пружинному и маятниковому заводным механизмам. До этого подобные устройства приводились в движение гирями, что позволяло создавать только крупные и относительно несложные изделия. Новые накопители энергии (пружина и маятник) стали настоящим прорывом в миниатюризации автоматических механизмов.
Особенно прославился на этом поприще мастер Жак де Вокансон, который жил в 18 веке – к слову, в детстве обучавшийся в иезуитской школе. Особенную популярность получили два его изобретения:
- механическая утка, способная взмахивать крыльями, клевать зерно с руки и даже испражняться;
- автоматический музыкант, умеющий наигрывать различные мелодии на флейте и свирели.
Другим известным мастером был швейцарец Пьер Жаке Дро, живший в том же 18 веке и основавший знаменитую часовую компанию Jaquet Droz. В то время он прославился не только своими хронометрами, но и множеством сложнейших устройств, среди которых особенно известно три его творения:
- «Писарь» – автоматическая фигура мальчика, содержащая около 4 000 деталей, была способна написать любой текст из 40 знаков, самостоятельно макая перо в чернильницу;
- «Художник» – похожий автомат, только вместо текста наносивший на бумагу различные рисунки, например портреты людей, изображения животных и т. д.;
- «Девушка-музыкант» – автомат в виде органистки, который умел наигрывать на небольшом органе 5 различных мелодий, при этом двигая головой и телом, а в конце выступления изящно кланяясь.
Отличительной чертой этих автоматонов была возможность их программировать, для чего использовались барабаны или диски с насечками, в которых была закодирована последовательность действий. Поменяв их расположение, мастер мог заставить свои устройства написать различные тексты, сыграть другую мелодию и т. д. И все же утверждать, что именно он создал первого робота, нельзя – его механизмы еще слишком мало взаимодействовали с внешней средой, а их функции были сугубо развлекательными.
Технология создания подобных устройств получила широкое распространение не только в Европе, но и мире. В конце 18 века в Японии была создана автоматическая девушка, способная стрелять из лука. В Эрмитаже выставлены знаменитые часы с павлином, купленные Екатериной Великой в Британии. Вклад российских мастеров здесь тоже есть – при перевозке в Россию механизм сильно повредился, но знаменитый изобретатель Кулибин смог полностью восстановить его.
Изготовление автоматонов развивалось по пути не только усложнения, но и миниатюризации устройств. Если первые образцы таких механизмов занимали достаточно много места, то к 19 веку их часто умещали в карманные часы. В основном это были сугубо развлекательные устройства, изготавливаемые для аристократов, передвижных цирков, выставок и т. д. Однако пройдет совсем немного времени, и автоматы начнут помогать людям.
Основные этапы
Процесс эволюции счетных устройств начался в древние времена и продолжается сегодня. За это время люди создали различные приспособления для счета. Краткая история их развития может быть описана с помощью основных этапов:
- Ручной. Это самый длительный этап. Он начался в глубокой древности, а завершился в середине XVII столетия. За это время были созданы различные ручные средства для подсчета, например, финикийские фигурки, логарифмическая линейка и т. д.
- Механический этап развития. Длился более двух столетий (вторая половина XVII — конец XIX века). Это время характеризуется быстрым развитием науки, что привело к появлению механических счетных машин. Они могли выполнять простые арифметические операции.
- Электромеханический. Среди всех этапов эволюции вычислительных устройств он оказался самым коротким. Его длительность составила лишь 60 лет. Начало электромеханическому этапу положило создание первого табулятора (1887), а завершился период в 1946 году. Созданные на этом временном отрезке устройства использовали электрический привод и реле. С их помощью скорость и точность вычислений существенно увеличились.
- Электронный этап начался в середине XX столетия и продолжается сегодня. Первые компьютеры имели большие размеры и существенно отличались от современных ПК.
Кто первым изобрел телефон и в каком году
В 1861 году учёный из Германии Филипп Райс придумал устройство, которое могло передавать по кабелю всевозможные звуки. Это и был первый телефон. (Стоит ознакомиться с тем, кто изобрёл телевизор и его историей создания) Райсу не удалось зарегистрировать патент на своё изобретение, поэтому не стал так широко известен, как американец Александр Белл.
14.02.1876 г. Белл отнес заявление в Патентное бюро в Вашингтоне, чтобы запатентовать «Телеграфное устройство, при помощи которого можно передавать человеческую речь». Двумя часами позже там появился Илайша Грей, специалист по электротехнике. Изобретение Грея носило название «Устройство для передачи и приема вокальных звуков телеграфным способом». Ему отказали в патенте.
07.03.1876 г. Александру Беллу выдали авторское свидетельство на «усовершенствованную модель телеграфа».
Это устройство состояло из деревянной подставочки, слуховой трубки, батареи (сосуда с кислотой) и проводов. Сам изобретатель называл его виселицей.
В 1878 году в Америке началась серия судебных процессов против Александра Белла. Около тридцати человек пытались отнять у него лавры изобретателя. Шесть исков были отклонены сразу же. Претензии остальных изобретателей были разделены на 11 пунктов и рассматривались отдельно. По восьми из этих пунктов было признано первенство Белла, по трём остальным суд выиграли изобретатели Эдисон и МакДоноут. Грей не выиграл ни одного дела. Хотя исследование дневников Белла и документов, поданных Греем в Патентное бюро, проведенное много лет спустя, показало, что автор изобретения – именно Грей.
Вопросы безопасности [ править | править код ]
Электромагнитная безопасность
Воздействия микроволн на человека сводится к тепловым эффектам (локальному перегреву), проявляющимся в ожогах и катарактах. Советские учёные также отмечали психоневрологические эффекты (усталость, головная боль) , причины нетеплового воздействия не изучены .
Человек может почувствовать микроволновое излучение (ощутив нагрев) при плотности мощности 20-50 мВт/см²). Длительное облучение на уровне свыше 100 мВт/см² может привести к появлению катаракт и временному бесплодию. Безопасным стандарт ANSI считает уровень 10 мВт/см², предельный уровень для микроволновых печей установлен в 1 мВт/см² в пяти сантиметрах от печи. Европейский стандарт считает безопасным уровнем 10 мкВт/см² (0,01 мВт/см²) на расстоянии 50 см от печи . Российские нормы (СанПиН 2.2.4./2.1.8.055-96) следуют европейскому стандарту для населения; для персонала, обслуживающего микроволновую технику, нормы значительно выше.
Микроволновые печи на момент их изготовления соответствуют строгим стандартам, регламентирующим как излучение вне печи, так и блокировки, предотвращающие работу печи при открытой дверце . В процессе использования материалы двери снашиваются, потому обычно существует больший предел излучения для старых печей (5 мВт/см² в стандарте ANSI). Исследования печей, эксплуатировавшихся в США в 1970 году, показали, что значительная их часть (20-30%) излучала существенно выше предела, причём результаты сильно зависели от качества обслуживания .
Развитие телефонии
Первые телефоны имели дальность действия всего в 500 метров, у них не было звонка, и вызов приходилось осуществлять с помощью свистка. После внедрения в телефон угольного микрофона и индукционной катушки дальность действия устройства значительно увеличилась.
Первые телефонные станции не могли соединить абонентов напрямую. Для того чтобы «позвонить», нужно было снять трубку и начать крутить рычаг. После соединения с телефонисткой ей говорили номер абонента, она втыкала штекер в гнездо, и только после этого начинался разговор.
Звонить напрямую стало возможно с 20-х годов прошлого века, хотя автоматический коммутатор, способный заменить труд телефонисток, еще в 1887 году предложил русский ученый К.А. Мостицкий .
Это сейчас мы привыкли к 7-ми значным номерам и международным телефонным кодам. А первые телефонные номера состояли всего из 2-3 цифр.
В 1927 году уже можно было позвонить из Нью-Йорка в Лондон. Телефонные сети стали активно покрывать земной шар.
Кстати, звоните нам в любое время! Для наших читателей сейчас действует скидка 10% на любой вид работы
Изобретение технологии видеозаписи и создание первого аппарата
Принцип кодирования изображения в видеосигнал придумал немецкий изобретатель Пауль Нипков. В 1884 году он запатентовал «электрический телескоп для воспроизведения светящихся объектов» представляющий собой диск-светоприемник с отверстиями по спирали.
Первую механическую видеокамеру придумал для записи изображений в движении шотландский инженер Д. Бэрд в 1924 году. В основе его аппарата был использован диск Нипкова, посредством которого изображение кодировалось в видеосигнал для передачи по проводу. В этом неподвижном агрегате посредством провода соединялись снимающая камера и записывающий сигнал аппарата
Виды электричества в природе
Самый простой пример электричества, возникающего естественным путём – это молнии. Частицы воды в облаках постоянно сталкиваются друг с другом, приобретая положительный или отрицательный заряд. Более лёгкие, положительно заряженные частицы оказываются в верхней части облака, а тяжёлые отрицательные перемещаются вниз. Когда два подобных облака оказываются на достаточно близком расстоянии, но на разной высоте, положительные заряды одного начинают взаимно притягиваться отрицательными частицами другого. В этот момент и возникает молния. Также это явление возникает между облаками и самой земной поверхностью.
Другое проявление электричества в природе – это специальные органы у рыб, скатов и угрей. С их помощью они могут создавать электрические заряды, чтобы обороняться от хищников или оглушать своих жертв. Их потенциал – от совсем слабых разрядов, незаметных для человека, до смертельно опасных. Некоторые рыбы создают вокруг себя слабое электрическое поле, помогающее искать добычу и ориентироваться в мутной воде. Любой физический объект так или иначе искажает его, что помогает воссоздавать окружающее пространство и «видеть» без глаз.
Также электричество проявляется и в работе нервной системы живых организмов. Нервный импульс передаёт информацию от одной клетки к другой, позволяя реагировать на внешние и внутренние раздражители, мыслить и управлять своими движениями.
Кто изобрел лампочку первым?
Что такое статическое электричество и как с ним бороться?
Сила Лоренца и правило левой руки. Движение заряженных частиц в магнитном поле
Что такое ЭДС индукции и когда возникает?
Что такое электрический ток простыми словами
Определение направления вектора магнитной индукции с помощью правила буравчика и правила правой руки
Вклад Меуччи
В 2002 году Конгресс США признал, что данный патент был выдан незаслуженно, а истинным первооткрывателем телефонной связи следует считать не шотландского ученого Александра Грехема Белла, а итальянского изобретателя Антонио Меуччи, который создал свое устройство за много лет дот телефона Белла.
В 1860 году он создал действительно первый аппарат, способный передавать звук по проводам. Устройство Меуччи получило название телекстрофон.
На момент создание и усовершенствования изобретения Меуччи жил в США, был уже почти пожилым человеком и находился в очень плохом финансовом положении.
На этом этапе его изобретением и заинтересовалась крупная компания Вестерн Юнион.
Ее представители предложили ученому продать все его разработки за солидну.ю сумму, а также обещали содействовать в получении патента.
Плохое финансовое положение вынудило Меуччи уступить требованиям компании. Он получил свои деньги, но никакой помощи в получении патента так и не дождался, потому он подал заявку сам, но получил отказ. А в 1876 году патент на почти полностью аналогичное устройство получил Александр Белл.
Это стало для Меуччи серьезным потрясением, и он попытался оспорить решение о присуждении патента Беллу в судебном порядке.
На протяжении первых этапов разбирательств у Меуччи не хватало финансов для борьбы с огромной корпорацией.
В результате право на патент ему все же вернули в судебном порядке, но лишь тогда, когда срок действия этого патента уже истек.
Важно! Лишь в 2002 году вышла резолюция Конгресса Соединенных Штатов Америки, согласно которой именно Меуччи был официально признан изобретателем телефона.
<Рис. 5 Меуччи>
Мобильная связь
История сотовой связи началась с радиотелефонов, первые испытания которых провели в 1941 году Г. Шапиро и И. Захарченко в СССР, а компания AT&T Bell Laboratories – в США.
Система работала на основе радиосвязи и предполагалась для использования для связи между автомобилями (в современном понимании она была больше похожа на рацию, чем на телефон).
В обоих сверхдержавах испытания прошли успешно и система полностью ответила ожиданиям изобретателей.
А уже в 1947 году в США была впервые предложена концепция использования шестиугольных сот для осуществления связи. Предложили к использованию ее Дуглас Ринг и Рэй Янг, изобретатели, работающие в штате компании Bell. Испытания также прошли успешно, и именно на основе этой технологии в дальнейшем развивалась мобильная связь (и именно на основе этой технологии и получила свое название).
Но настоящей родиной мобильной связи все же считается не США или СССР, а Швеция.
Здесь, в 1956 году была запущена в работу и успешно эксплуатировалась система связи между автомобилями, которая стала первой подобной системой в мире.
Изначально проект реализовался в трех крупнейших городах государства – Стокгольме, Гетеборге и Мальме.
<Рис. 7 Первые радиотелефоны>
История создания
Споры о том, кто и когда изобрел телевизор, продолжаются и сегодня. Объясняется это тем, что в основе было 2 технологии и шли они независимо друг от друга. Первая – механический ТВ, вторая – электронный.
Механический телевизор
Немецкий инженер П. Нипков в 1884 году придумал устройство механического сканирования. Это был диск, имеющий спиральные отверстия, за счет которых картинка раскладывалась на отдельные элементы. В ходе вращения диск пропускал свет, в результате чего последовательно формировалось изображение.
Изобретателю из Шотландии Д. Бэрду приглянулся «диск Нипкова». Он взял его как основу, развил и создал полноценный механический ТВ. Возможностей усилить сигнал в то время уже было достаточно, и в 1925 году Бэрд продемонстрировал динамическую картинку. В 1926 он начал передавать сигнал по радио с последующей демонстрацией изображения на экранной поверхности. Это событие стало считаться первой телевизионной связью, первой телепередачей.
Механический телевизор.
Электронный телевизор
Первым в этом направлении был российский ученый Б. Розинг. Механический принцип работы он сразу отмел как бесперспективный. Он занимался исследованием безинерционного электронного луча. У созданного им телеприемника отсутствовала механическая передача, и такой прибор стал прототипом привычного всем ТВ. На этом изыскания не закончились – в 1911 году он разработал кинескоп.
Также к электронному устройству причастен ученый А. Арчибальд, который занимался теоретическими изысканиями. В 1908 году, публикуясь в издании «Nature», он обосновал ограниченность механики. Его интересовала технология ЭЛТ. Впоследствии была разработана схема, но она была идентична созданной Рогозиным.
Выделился и японский ученый Т. Кэндзиро, который в одном устройстве скрестил ЭЛТ и диск Нипкова. В 1920 году он представил ТВ, имеющее разрешение 40 строк. На этом работы не закончились, и уже в 1927 было представлено устройство, транслирующее 100 строк, вместе с чем повысилось качество изображения.
Ученый из Америки Ф. Тэйлор тоже пытался усовершенствовать систему передачи сигнала. Он создал электронный аналог диска Нипкова. Устройство делило картинку на совокупность электросигналов.
В. Зворыкин видел перспективу в ЭЛТ с электростатической фокусировкой. Преимущественно он развивал принимающее звено, считая, что для передачи сигнала годится и диск Нипкова. Его разработка была запатентована в 1935 году. В основе работы многих ТВ, выпускаемых до 70-х годов, была магнитная фокусировка. Телевизоры, как их понимают сейчас, стали появляться именно после открытия Зворыкина.
Электронный телевизор.
Первый цветной ТВ
Создатели механических телеприемников и начали задумываться о цветном изображении. Первая разработка была создана И. Адамяном. В 1908 году он получил патент на устройство, способное передавать двуцветный сигнал. Подключился и Д. Брэд, который в 1928 году представил телевизор, последовательно передающий изображение при помощи 3-х фильтров: синего, красного и зеленого.
Все это было не более чем попытками. Цветное телевидение получило широкое развитие после Второй мировой войны, когда все силы были брошены на гражданское производство, то есть пошел прогресс. В то же время для передачи картинки начали использовать дециметровые волны. Так, в 1940 году американские ученые представили «Тринископ» – систему с 3-мя кинескопами разного цвета.
Так кто придумал первый компьютер?
предка принято называть именно Чарльза Бэббиджа, с юных лет любившего информатику. Основываясь на многолетней работе, он изобрел механизм, способный складывать разностным методом. Его конструкция состояла из множества громоздких шестерен.
Чарльз Бэббидж. Аппарат, использующий схемы десятичной системы счисления, дал точный результат в течение одной минуты. Разработчик Чарльз Бэббидж получил за свою работу британский грант на общую сумму 17 000 фунтов стерлингов. Эти деньги пошли на модернизацию аппарата, но не хватило средств для завершения новых проектов.
Подводя итог ответу на вопрос о том, кто изобрел первый компьютер, первым в списке значится Чарльз Бэббидж, изобретатель, разработавший конструкцию механического устройства. Также внесены:
- Алан Тьюринг — создал универсальную техническую схему.
- Джон Мочли — сконструировал первый компьютер.
- Иоанн Атанасов — разработал непрограммируемый электронный компьютер.
- Джон фон Нейман — Он описал архитектуру (запоминающее устройство), которая стала основой всех современных компьютеров.
- Конрад Цузе — разработчик первого электромеханического программируемого устройства.
Электродвигатель
Борис Семенович Якоби, архитектор по образованию, в возрасте 33 лет, будучи в Кенигсберге, увлекся физикой заряженных частиц, и в 1834 году он делает открытие – электродвигатель, работающий по принципу вращения рабочего вала. Мгновенно Якоби становится знаменитым в ученых кругах, и среди многих приглашений на дальнейшее обучение и развитие он выбирает Петербургский университет. Так, вместе с академиком Эмилием Христиановичем Ленцем он продолжил работу над электродвигателем, создав еще два варианта. Первый был предназначен для лодки и вращал гребные колеса. С помощью этого двигателя судно легко держалось на плаву, двигаясь даже против течения реки Невы. А второй электродвигатель был прообразом современного трамвая и катил по рельсам человека в тележке. Среди изобретений Якоби можно отметить также гальванопластику – процесс, который позволяет создавать идеальные копии исходного предмета. Это открытие повсеместно применялось для украшений интерьеров, домов и многого другого. Среди заслуг ученого также числится создание подземных и подводных кабелей. Борис Якоби стал автором около десятка конструкций телеграфных аппаратов, а в 1850 году изобрел первый в мире буквопечатающий телеграфный аппарат, который работал по принципу синхронного движения. Это устройство было признано одним из крупнейших достижений электротехники середины XIX века.
Эпоха IBM
Холлерит всю жизнь совершенствовал свою машину. Например, разработал устройство для автоматической подачи карточек, научил машину не только считывать единицы, но и производить простейшие арифметические действия.
В начале XX века машины Холлерита пользовались огромным спросом у бухгалтеров. Их даже начали называть бухгалтерскими машинами. Со временем Холлерит создал собственную компанию, которая несколько раз сменила название и в 1924 году стала называться… IBM. Да, легендарный голубой гигант родился из перфокарт!
В первые годы существования перфокарт появилось множество разных форматов с разным количеством строк и столбцов. Но к концу 1920-х годов стало понятно, что без единого стандарта не обойтись. И IBM разработала такой стандарт: 80 столбцов, 10 строк и прямоугольные отверстия — так на карточку входило больше информации.
Перфокарта, формат IBM. Изображение: Wikimedia Commons
Этот формат почти не менялся на протяжении всей последующей истории перфокарт. Разве что в 1960-е годы в Америке начали выпускать перфокарты с закруглёнными углами, а вот в Советском Союзе они так и оставались прямоугольными до самого конца.
В послевоенные годы в западном мире перфокарты были везде: на них печатали квитанции, банковские товарные чеки, любые бухгалтерские документы. Появились даже продвинутые бухгалтерские машины — табуляторы на перфокартах. Они умели сортировать карты, считывать по несколько штук в минуту, сравнивать между собой по разным признакам, производить арифметические действия и печатать результат на новых перфокартах.
Табулятор IBM 407 в Редстоунском арсенале армии США, 1961 год. Фото: Wikimedia Commons
Да, такие машины нельзя назвать компьютерами — их невозможно было программировать, — зато они просто космически упрощали документооборот на предприятиях. Их так полюбили, что некоторые из них продолжали использовать в работе даже в начале XXI века — в эпоху компьютеров, — хотя с производства сняли ещё в 1970-х.
Для пробивки перфокарт использовали специальные устройства — перфораторы. Первые перфораторы были ручными и больше всего напоминали обычный дырокол. Потом они усложнились и превратились во что-то вроде пишущей машинки.
Оператор набирал символ на клавиатуре, машина кодировала его и пробивала отверстия в перфокартах. IBM даже выпустила карманные перфораторы для ведения учёта в полевых условиях. По размеру и форме такие устройства напоминали современный планшет.
Ручной перфоратор Wright Punch. Кадр: Nevlabs / YouTube
Слайды и текст этой презентации
ИСТОРИЯ СОЗДАНИЯ ШВЕЙНОЙ МАШИНЫ
Первые проекты
швейных машин
Первый проект швейной машины был предложен в конце 15 века Леонардом да Винчи, но так и остался невоплощенным. В 1755г. немец Карл Вейзенталь получил патент на швейную машину, копирующую образование стежков в ручную. В 1790г англичанин Томас Сент изобрел швейную машину для пошива сапог. Машина имела ручной привод, заготовки сапог перемещались относительно иглы рукой.Более совершенная машина однониточного цепного переплетения была создана французом Б. Тимонье. Все эти машины не получили широкого практического применения.
Первая машина
с челночным механизмом
В 1845 году американец Элиас Хоу получает патент на первую машинку с челночным механизмом. Данная машинка заменяла труд пяти портных
Изобретение швейной машины
с ножным приводом
Последующими изобретателями, швейная машина была усовершенствована. В первых машинах А. Вильсона (1850г.) и И. Зингера (1851г.) игле сообщалось вертикальное движение, а материалы прижатые лапкой, располагались на горизонтальной платформе. Прерывистое перемещение материалов осуществлялось зубчатым колесом, а затем зубчатой пластиной (рейкой). Здесь швейная машина была практически доведена до совершенного вида.
Исаак Меррит Зингер
На вопрос: «Кто изобрел швейную машину?” – большинство, не задумываясь, ответят – Зингер. Названная в честь своего основателя корпорация “Зингер”, крупнейший в мире производитель швейных машинок, уже более150 лет.
История развития
швейных машин в России
В 1900 г. в подмосковном городе Подольске был открыт завод по сборке швейных машин “Зингер” Предприятие начиналось с небольших мастерских.Позже открыли 65 представительств по всей стране. Машинки из России вывозили за границу: в Турцию, Персию, Японию и Китай. Компания “Зингер” стала “Поставщиком Двора Его Императорского Величества”.
История завода в г. Подольске
Завод в г. Подольске был одним из самых больших филиалов компании «Зингер» до первой мировой войны.С 1904 по 1914 годы на нем было произведено около 600 тысяч швейных машин разного класса. После революции на предприятие выпускали те же машинки, что и до революции, но под названием сначала “Госшвеймашина”, затем “ПМЗ”. После второй мировой войны “Singer” на территории СССР, в чистом виде больше не выпускался.
Швейная машина
производства Германии
Одна из первых швейных машин челночного стежка фирмы “Зайдель и Науманн” (Германия, 1870-1880). Эти машины с 1870 года распространялись Торговым домом Попова на территории России и Персии.
Швейная машина
производства США
Швейная машина “Оригиналь экспресс” цепного стежка (США, 1860-1880).Основание выполнено в технике художественного литья, что соответствует технической моде второй половины XIX века.
Сапожная швейная машина
Сапожная швейная машина челночного стежка для сшивания головок и голенищ обуви (подольский завод компании “Зингер”, 1902-1917).
Швейная машина «Гоу»
Фабрично-ремесленная швейная машина “Гоу” челночного стежка для стачивания тяжелых тканей. Изготовлена на фирме “Гоу-машина-компани” (США, Нью-йорк, 1865-1875). Применялась в основном для шитья парусов для флота.
Швейная машина «Зингер»
Швейная машина фирмы “Зингер” (США, 1900-1915). Предназначенная для изготовления закрепок и укрепления петель, пришивания бантиков к обуви и платью.
Швейная машина
“Дюркопп” Германия
Фабрично-ремесленная швейная машина челночного стежка фирмы “Дюркопп” (Германия, 1900-1915). Предназначена для выполнения ажурных работ, всевозможных мережек для украшения одежды, столового и постельного белья.
Современные швейные машины
Компьютеризированные швейно-вышивальные машины имеют более 500 швейных программ (220 рабочих и декоративных строчек, 11 видов петель, 324 буквы, 4 алфавита). Их можно подключать к персональному компьютеру, позволяющему создавать узоры вышивки, манипулируя мышью.
Классификация швейных машин
ПроизводственныеУниверсальные Специальные Полуавтоматы Автоматы
БытовыеС ручным приводом С ножным приводомС электрическим приводом
Виды приводов
а) ручной б) ножной в) электрический
Основные детали и узлы швейной машины