Центробежный вентилятор: специфика устройства и принцип работы прибора

Назначение

Военный инженер Саблуков предложил к применению устройство, ставшее незаменимым в конвекции газа – воздушной смеси в больших объёмах.

Прямоугольные – от трёхсот на сто пятьдесят миллиметров, до пятисот на тысячу пятьсот миллиметров, что даёт возможность применения в промышленности. Ниже приведен список мест, где еще используются радиальные вентиляторы.

Другие области применения:

  1. Кухни, санитарные узлы, ванные комнаты.
  2. Вредное производство – для быстрого удаления и очищения грязного воздуха.
  3. В сельском хозяйстве: на животноводческих комплексах, птичниках, теплицах.
  4. Торговых центрах, автобазах — для удаления взрывоопасных смесей.

Пример подбора вентилятора

ТРЕБУЕТСЯ ПОДОБРАТЬ вентилятор на следующие параметры воздушной сети: ДАНО:

  • производительность Q = 8280 м3/час
  • полное давление Pv =130 Па
  • температура перемещаемого воздуха t = 20 о С
  • плотность перемещаемого воздуха ρ = 1,2 кг/м

РЕШЕНИЕ:

  1. По сводным графикам аэродинамических характеристик для заданных величин производительности и полного давления выбираем оптимальный размер вентилятора и синхронную частоту вращения из удовлетворяющих условиям подбора вариантов. Таковым оказывается вентилятор FTDA-050, оснащённый электродвигателем с синхронной частотой вращения n0 = 1450 об/мин при частоте питающей сети 50 Гц.
  2. На графике индивидуальных характеристик вентилятора FTDA-050 с частотой вращения рабочего колеса n0 = 1450 об/мин (рабочее колесо с четырьмя лопатками, например) отмечаем рабочую точку вентилятора, которая лежит на пересечении координат Q0 = 8280 м3/час и Pv0 = 130 Па. Определяем угол установки лопаток рабочего колеса. Он равен 250. Проведя интерполяцию, получаем значение потребляемой мощности N0 = 0,46 кВт. По разделу «Комплектация электродвигателями» настоящего Руководства определяется возможность комплектации данного вентилятора электродвигателем мощностью N = 0,55 кВт и частотой вращения n = 1500 об/мин. Для установки по разделу «Справочные данные» выбирается электродвигатель АИС 80А4 мощностью N = 0,55 кВт и фактической частотой вращения n = 1360 об/мин.
  3. Фактические аэродинамические параметры вентилятора и потребляемая мощность, уточнённые по формулам (1, 2 и 3), будут следующими: Q = 8280 • (1360/1450) = 7766 м3/час; 32 P =130•(1360/1450) =114,4Па; v N = 0,46 • (1360/1450 )3 = 0,38 кВт.
  4. Поскольку фактическая частота вращения электродвигателя значительно отличается от частоты вращения рабочего колеса вентилятора, для которого построены графики, необходимо пересчитать характеристики вентилятора с требуемых значений на те, которые нужно откладывать на графике. Используя формулы (1 и 2) и преобразуя выражения относительно величин с индексом «0», получаем: Q0 = 8280 • (1450/1360) = 8828 м3/час; Pv0 = 130 • (1450/1360 )2 = 148 Па. Находим и отмечаем на том же графике условную рабочую точку. Определяем угол установки лопаток: 280. Потребляемая мощность по графику: N0 = 0,55 кВт. Фактическую потребляемую мощность находим по формуле (3): N = 0,55 • (1360/1450 )3 = 0,45 кВт.
  5. Обозначение подобранного вентилятора: FTDA-050-4-28 с электродвигателем АИС 80А4 мощностью N = 0,55 кВт и частотой вращения n = 1360 об/мин.
  6. По рисунку и таблице определяем габаритные и присоединительные размеры вентилятора.

Ремонт

Текущий – устранение мелких неполадок, чистка от ржавчины, грязи. Смазка, замеры вибрации. Осмотр корпуса на наличие трещин. Проводится во время дежурных смен.

Средний – Включает все работы по текущему ремонту, а также предусмотренные графиком планового ремонта – проверка состояния подвижных узлов по индикатору.

Капитальный – проверка фундамента, анкерных болтов, испытания корпуса со вскрытием. Очистка от грязи, ржавчины. Выявление деформаций, замеров на вибрацию. Проверяется состояние подшипников, осевой люфт.

Редактор публикации: Беспалов Алексей Евгеньевич

Кандидат технических наук. Начальник Центра образовательных стандартов и программ «Московского государственного строительного университета» (НИУ «МГСУ»).

Принцип работы


Устройство и принцип работы центробежного вентилятора Вентиляторы этого типа представлены в двух вариантах: с радиальным или осевым входным отверстием для всасывания воздушного потока. На первоначальном этапе воздушные массы выходят на поверхность крутящегося импеллера. Далее лопатки крыльчатки делят их и переносят внутрь стандартной камеры, где происходит сжимание масс воздуха. На следующем этапе запускается процесс нагнетания потоков в камере и повышается давление газа.

Заключительный цикл работы вентилятора включает отвод сжатого газового вещества к отверстию выхода, после чего воздух начинает поступать в центральный воздуховод и двигаться в заданном направлении. Во время разрежения воздушная масса перемещается от трубопровода либо из замкнутого пространства и затем выводится в окружающую среду либо дополнительное помещение.

Принцип работы

Вентилятор центробежный (ВЦ) являет собой механизм, который перемещает большие потоки воздуха или газообразных веществ с очень низким приростом давления. Для увеличения скорости работы в машине встроена вращающаяся крыльчатка. Чтобы повысить давление движущегося потока, вентилятор центробежный использует кинетическую энергию крыльчатки или вращающихся лопастей. Ускорение воздуха происходит обычно при температуре 90ºС путем изменения его направления.

Крыльчатка вентилятора состоит из ребер, установленных вокруг центра. В центре вентилятора находится ведущий вал, который проходит через весь корпус вентилятора. Воздух и газообразные вещества поступают в устройство со стороны крыльчатки, поворачиваются на 90 градусов, проходят через лопасти вентилятора и выходят из корпуса.

Центробежный вентилятор является механизмом постоянного объема. То есть при постоянной скорости вращения вентиляционного устройства ЦВ будет перемещать постоянный объем воздуха. Это значит, что скорость работы устройства всегда фиксирована, даже если нет массового расхода через вентилятор.

Центробежные вентиляторы характеризуются как надежные, крепкие и тихие машины, которые могут функционировать практически в любых условиях.

Особенности рабочего цикла прибора

Рассмотрим общий принцип работы центробежной воздуходувки радиальной конструкции. Отметим, что специалисты различают две основные конструкции вентилятора: с осевым и радиальным размещением входного отверстия, куда всасывается воздушный поток.

Это влияет в первую очередь на вариант монтажа вентилятора в систему и практически не влияет на общую производительность.

Вентилятор радиального типа может работать как с обычным воздухом, который он забирает из пространства, так и с потоковым воздухом что идёт через воздухопровод (эффект баланса областей с разным давлением)

Осевое входное отверстие характерно для нагнетательных воздуходувок общего применения. Радиальное размещение входа потока характерно для воздуходувок магистрального использования.

На первом этапе рабочего цикла вентилятора поток воздуха перемещается на поверхность быстро вращающегося импеллера. Лопатки крыльчатки разделяют воздух на небольшие объёмы, которые перемещаются внутрь рабочей камеры.

Здесь происходит накапливание воздушной массы, то есть происходит непосредственное сжатие воздушной массы в малый объём.

Сама конструкция корпуса агрегата имеет свои особенности.

Известны две наиболее распространённые формы корпуса:

  • округлые;
  • спиралевидные.

Округлая форма корпуса характерна для вентиляторов, которые перемещают огромное количество воздуха за короткое время выполнения процесса. А спиралевидная форма присуща вентиляторам, которые дополнительно производят сжатие воздушного объёма и генерацию среднего и высокого давления.

На втором этапе происходит нагнетание воздуха в рабочей камере. Как известно, при постоянном объёме с увеличением общей массы молекул газа увеличивается количество столкновений молекул, а значит и увеличивается их скорость. Следовательно, давление газа также увеличивается.

Большое значение имеет форма и количество лопастей. Все без исключения варианты импеллеров тестируются в аэродинамических трубах для определения оптимальных условий эксплуатации

На заключительном этапе происходит отвод сжатого газа из рабочей камеры к выходному отверстию. Дальше воздух переходит в центральный воздуховод и перемещается в указанном направлении.

Процесс разрежения происходит с точностью наоборот. Воздух забирается от воздушного трубопровода или замкнутого пространства, где необходимо создать разреженную область, и выводится в окружающую среду или другое ограниченное пространство.

Особенности рабочего цикла

Рассмотрим общий принцип работы центробежной воздуходувки радиальной конструкции. Отметим, что специалисты различают две основные конструкции вентилятора: с осевым и радиальным размещением входного отверстия, куда всасывается воздушный поток. Это влияет в первую очередь на вариант монтажа вентилятора в систему и практически не влияет на общую производительность.

Вентилятор радиального типа может работать как с обычным воздухом, который он забирает из пространства, так и с потоковым воздухом что идёт через воздухопровод (эффект баланса областей с разным давлением)

Осевое входное отверстие характерно для нагнетательных воздуходувок общего применения. Радиальное размещение входа потока характерно для воздуходувок магистрального использования.

На первом этапе рабочего цикла вентилятора поток воздуха перемещается на поверхность быстро вращающегося импеллера. Лопатки крыльчатки разделяют воздух на небольшие объёмы, которые перемещаются внутрь рабочей камеры. Здесь происходит накапливание воздушной массы, то есть происходит непосредственное сжатие воздушной массы в малый объём.

Сама конструкция корпуса агрегата имеет свои особенности. Известны две наиболее распространённые формы корпуса: округлые и спиралевидные. Округлая форма корпуса характерна для вентиляторов, которые перемещают огромное количество воздуха за короткое время выполнения процесса. Спиралевидная форма присуща вентиляторам, которые дополнительно производят сжатие воздушного объёма и генерацию среднего и высокого давления.

На втором этапе происходит нагнетание воздуха в рабочей камере. Как известно, при постоянном объёме с увеличением общей массы молекул газа увеличивается количество столкновений молекул, а значит и увеличивается их скорость. Следовательно, давление газа также увеличивается.

Большое значение имеет форма и количество лопастей. Все без исключения варианты импеллеров тестируются в аэродинамических трубах для определения оптимальных условий эксплуатации (+)

На заключительном этапе происходит отвод сжатого газа из рабочей камеры к выходному отверстию. Дальше воздух переходит в центральный воздуховод и перемещается в указанном направлении.

Процесс разрежения происходит с точностью наоборот. Воздух забирается от воздушного трубопровода или замкнутого пространства, где необходимо создать разреженную область, и выводится в окружающую среду или другое ограниченное пространство.

Общие данные о центробежных (радиальных) вентиляторах

Вентиляторы улитки имеют двойственное обозначение (маркировку): ВР и ВЦ, то есть, радиальный и центробежный. Первое говорит о том, что лопатки рабочего органа оборудования расположены радиально относительно своего ротора. Второе – это обозначение физического принципа работы прибора, то есть, процесс забора и перемещения воздушных масс происходит за счет центробежной силы.

Именно центробежные вентиляторы в системах вентиляции показали себя с положительной стороны за счет высокой эффективности отвода воздуха.

Принцип действия

Как уже было сказано, вентиляторы этой модификации работают на основе действия центробежной силы.

  1. Лопатки, закрепленные на роторе устройства, вращаются с большой скоростью, создавая завихрения внутри корпуса.
  2. Давление на входе падает, что становится причиной всасывания близ расположенного воздуха, который устремляется внутрь.
  3. Под действием лопаток он отбрасывается к периферии пространства, где создается высокое давление.
  4. Под его действием воздушный поток устремляется к выходному патрубку.

Так работают все центробежные модели, которые устанавливаются не только в системах вентиляции, но и дымоудаления. О последних надо сказать, что изготавливают их корпус из алюминиевого сплава или стали, покрытой жаростойкими материалами, а комплектуют взрывозащищенным электродвигателем.

Особенности конструкции

Как уже было сказано, основная особенность конструкции – улитка. Необходимо обозначить и форму лопаток. В вентиляторах этой марки применяют три их разновидности:

  • с прямым наклоном,
  • с наклоном назад,
  • в виде крыла.

Первая позиция – это небольшие вентиляторы с большой мощностью и производительностью. То есть, они могут создавать условия, при которых другие модели требуют наличия большого корпуса. При этом они работают с низким уровнем шума. Вторая позиция – это экономный вариант, который потребляет на 20% электроэнергии меньше, чем другие позиции. Такие вентиляторы легко переносят нагрузки.

Что касается исполнения, которое относится к электродвигателю, то здесь также три позиции:

  • ротор закреплен напрямую с валом двигателя через муфту и подшипники;
  • через ременную передачу с помощью шкивов;
  • крыльчатка насажена на вал электродвигателя.

И еще одна особенность – это места соединения вентилятора с воздуховодами вентиляционной системы. Входной патрубок имеет прямоугольную форму отверстия, выходной круглую.

Особенности рабочего цикла прибора

Рассмотрим общий принцип работы центробежной воздуходувки радиальной конструкции. Отметим, что специалисты различают две основные конструкции вентилятора: с осевым и радиальным размещением входного отверстия, куда всасывается воздушный поток.

Это влияет в первую очередь на вариант монтажа вентилятора в систему и практически не влияет на общую производительность.


Вентилятор радиального типа может работать как с обычным воздухом, который он забирает из пространства, так и с потоковым воздухом что идёт через воздухопровод (эффект баланса областей с разным давлением)

Осевое входное отверстие характерно для нагнетательных воздуходувок общего применения. Радиальное размещение входа потока характерно для воздуходувок магистрального использования.

На первом этапе рабочего цикла вентилятора поток воздуха перемещается на поверхность быстро вращающегося импеллера. Лопатки крыльчатки разделяют воздух на небольшие объёмы, которые перемещаются внутрь рабочей камеры.

Здесь происходит накапливание воздушной массы, то есть происходит непосредственное сжатие воздушной массы в малый объём.

Сама конструкция корпуса агрегата имеет свои особенности.

Известны две наиболее распространённые формы корпуса:

  • округлые;
  • спиралевидные.

Округлая форма корпуса характерна для вентиляторов, которые перемещают огромное количество воздуха за короткое время выполнения процесса. А спиралевидная форма присуща вентиляторам, которые дополнительно производят сжатие воздушного объёма и генерацию среднего и высокого давления.

На втором этапе происходит нагнетание воздуха в рабочей камере. Как известно, при постоянном объёме с увеличением общей массы молекул газа увеличивается количество столкновений молекул, а значит и увеличивается их скорость. Следовательно, давление газа также увеличивается.


Большое значение имеет форма и количество лопастей. Все без исключения варианты импеллеров тестируются в аэродинамических трубах для определения оптимальных условий эксплуатации

На заключительном этапе происходит отвод сжатого газа из рабочей камеры к выходному отверстию. Дальше воздух переходит в центральный воздуховод и перемещается в указанном направлении.

Процесс разрежения происходит с точностью наоборот. Воздух забирается от воздушного трубопровода или замкнутого пространства, где необходимо создать разреженную область, и выводится в окружающую среду или другое ограниченное пространство.

Виды

Масштабы помещений, а также уровень загрязнения и нагрева воздуха в них требуют установки вытяжных систем соответствующего размера, мощности и конфигурации. Поэтому и центробежные вентиляторы бывают различных видов.

В зависимости от уровня давления, создаваемого воздушными массами в вытяжном канале, они классифицируются на вентиляторы:

  1. Низкого давления – до 1кПа. Чаще всего их конструкция предусматривает широкие листовые лопатки, которые загнуты вперед к всасывающему патрубку, с максимальной скоростью вращения до 50м/с. Сфера их применения – преимущественно вентиляционные системы. Они создают меньший уровень шума, вследствие этого их можно использовать в помещениях, где постоянно находятся люди.
  2. Среднего давления. При этом уровень нагрузки, создаваемой движением воздушных масс в вытяжном канале, может находиться в диапазоне от 1 до 3 кПа. Их лопасти могут иметь разный угол и направление наклона (как вперед, так и назад), выдерживают максимальную скорость до 80м/с. Сфера применения шире, чем у вентиляторов низкого давления: они также могут устанавливаться на технологических установках.
  3. Высокого давления. Такая техника применяется преимущественно для технологических установок. Полное давление в вытяжном канале составляет от 3кПа. Мощность установки создает окружную скорость всасываемых масс более 80 м/с. Турбинные колеса оснащаются исключительно лопастями загнутыми назад.

Давление является не единственным признаком, по которому различают радиальные вентиляторы. В зависимости от скорости воздушных масс, которая обеспечивается рабочим колесом, они делятся на два класса:

  • I класс – говорит о том, что фронтально загнутые лопасти обеспечивают скорость менее 30 м/с, а обратно загнутые – не более 50 м/с;
  • II класс включает более мощные установки: они обеспечивают скорость прогоняемым воздушным массам выше, чем вентиляторы I класса.

Кроме того, устройства производятся с разным направлением вращения относительно всасывающего патрубка:

  • ориентированные направо можно устанавливать с поворотом корпуса по ходу часовой стрелки;
  • налево – против хода часовой стрелки.

Сфера применения улиток во многом зависит от электродвигателя: его мощности и способа крепления к рабочему колесу:

  • оно может набирать обороты непосредственно на валу двигателя;
  • его вал соединяется с двигателем при помощи муфты и фиксируется одним или двумя подшипниками;
  • при помощи клиноременной передачи, при условии его фиксации одним или двумя подшипниками.

Особенности рабочего цикла прибора

Рассмотрим общий принцип работы центробежной воздуходувки радиальной конструкции. Отметим, что специалисты различают две основные конструкции вентилятора: с осевым и радиальным размещением входного отверстия, куда всасывается воздушный поток.

Это влияет в первую очередь на вариант монтажа вентилятора в систему и практически не влияет на общую производительность.


Вентилятор радиального типа может работать как с обычным воздухом, который он забирает из пространства, так и с потоковым воздухом что идёт через воздухопровод (эффект баланса областей с разным давлением)

Осевое входное отверстие характерно для нагнетательных воздуходувок общего применения. Радиальное размещение входа потока характерно для воздуходувок магистрального использования.

На первом этапе рабочего цикла вентилятора поток воздуха перемещается на поверхность быстро вращающегося импеллера. Лопатки крыльчатки разделяют воздух на небольшие объёмы, которые перемещаются внутрь рабочей камеры.

Здесь происходит накапливание воздушной массы, то есть происходит непосредственное сжатие воздушной массы в малый объём.

Сама конструкция корпуса агрегата имеет свои особенности.

Известны две наиболее распространённые формы корпуса:

  • округлые;
  • спиралевидные.

Округлая форма корпуса характерна для вентиляторов, которые перемещают огромное количество воздуха за короткое время выполнения процесса. А спиралевидная форма присуща вентиляторам, которые дополнительно производят сжатие воздушного объёма и генерацию среднего и высокого давления.

На втором этапе происходит нагнетание воздуха в рабочей камере. Как известно, при постоянном объёме с увеличением общей массы молекул газа увеличивается количество столкновений молекул, а значит и увеличивается их скорость. Следовательно, давление газа также увеличивается.


Большое значение имеет форма и количество лопастей. Все без исключения варианты импеллеров тестируются в аэродинамических трубах для определения оптимальных условий эксплуатации

На заключительном этапе происходит отвод сжатого газа из рабочей камеры к выходному отверстию. Дальше воздух переходит в центральный воздуховод и перемещается в указанном направлении.

Процесс разрежения происходит с точностью наоборот. Воздух забирается от воздушного трубопровода или замкнутого пространства, где необходимо создать разреженную область, и выводится в окружающую среду или другое ограниченное пространство.

Суть нагнетания и разрежения воздуха вентилятором

Вентилятор являет собой механическую конструкцию, которая способна обрабатывать поток газовоздушной смеси посредством увеличения её удельной энергии для последующего перемещения.

Такая архитектура агрегата предоставляет возможность создавать эффект нагнетания или разрежения рабочего газа в пространстве через увеличение или уменьшение давления соответственно (механизм преобразования энергии).

Под газовым давлением понимают бесконечный процесс хаотичного перемещения молекул газа, которые ударяясь о стенки замкнутого пространства, создают давление на них.

Следовательно, чем выше скорость этих молекул, тем больше ударов и тем выше давление. Газовое давление – это одна из главных характеристик газа.

Галерея изображенийЦентробежные вентиляторы — самый простой вариант механических устройств, применяемых в обустройстве и организации систем вентиляции, различающихся по назначению, объему и типу движения воздухаРадиальные, они же центробежные, вентиляторы позволяют реализовать разнообразные проекты приточной и вытяжной вентиляции. Используются в основном без воздуховодовРаботой центробежного вентилятора управляет двигатель, мощность которого подбирают в зависимости от объема перемещаемой воздушной массыЦентробежные вентиляторы производятся для работы и в чистом воздухе без примесей, и во взрывоопасных сложных средахСамая простая разновидность вентиляторовВентиляторная установка на производственном предприятииДвигатель центробежного вентиляторного устройстваРазновидности радиальных вентиляторных агрегатов

С иной стороны любой газ имеет еще два параметра: объём и температуру. Объём – количество пространства, которое заполнил газ. Температура газа – термодинамическая характеристика, которая связывает скорость молекул и генерируемое ими давление.

На этих “трёх китах” стоит молекулярно–кинетическая теория, которая является базисом для описания всех процессов связанных с обработкой газов и газовых смесей.

Процесс нагнетания являет собой принудительное сосредоточение молекул в замкнутом пространстве сверх некой нормы. Например, общепринятое воздушное давление у поверхности земли приблизительно составляет 100 кПа (105 кило Паскалей) или 760 мм рт. ст. (миллиметров ртутного столба).

С увеличением высоты над поверхностью Земли давление становится меньше, воздух становится разреженным.

Атмосферное давление – вес воздушного столба относительно площади поверхности над которой он находится. Не масса, а именно вес Р=mg. Измеряется барометром, остальные типы давления определяются манометром

Разрежение есть обратный процесс нагнетанию, во время которого молекулы покидают замкнутую систему. Объём остаётся тот же, а количество молекул уменьшается в разы, следовательно, и давление уменьшается.

Эффект нагнетания необходим для принудительного перемещения воздуха. Возможен вариант перемещения воздуха через эффект разрежения: для восстановления баланса давления во всей системе молекулы перемещаются от более сконцентрированной области молекул до менее сконцентрированной.

Таким способом происходит перемещение молекул газа.

Для определения скорости потока воздуха снаружи или внутри здания часто применяют специальный инструмент – анемометр. Незаменимый прибор для проектирования систем вентиляции

Существуют самые разные компоновки вентиляционных систем, но их условно можно разделить на несколько классов по определённым параметрам:

  1. По назначению. Различают вентиляторы общего и специального назначения. Вентиляторы применяются для обычного перемещения газа. Специальные вентиляторы используются для пневмотранспорта, транспортировки агрессивных и взрывоопасных газовых смесей.
  2. По быстроходности. Бывают с малой, средней и высокой удельной частотой вращения колеса с лопатками.
  3. По диапазону давления. Известны системы генерации низкого (до 1 кПа), среднего (1–3 кПа), высокого ( более 3 кПа) давления.

Некоторые промышленные и бытовые процессы с применением воздуходувок происходят в экстремальных условиях окружающей среды, поэтому к оборудованию выдвигаются соответствующие требования.

Таким образом, можно говорить о пылевых, влагозащищенных, термостойких, коррозиестойких, искрозащитных агрегатах и устройствах для удаления дыма и обычных вентиляторах.

Информация о видах вентиляторов подробно рассмотрена в другой нашей статье.

Технические характеристики

Все производители вентиляторов изготовляют это устройство под один стандарт. Такими условиями считаются чистый сухой воздух с плотностью 0,075 фунтов массы на кубический фут, температурой 21ºС и с атмосферным давлением 29,92 дюйма ртутного столба. Если вентилятор центробежный планируют использовать в нестандартных условиях, нужно провести корректировку мощности и статического давления механизма. Этим должен заниматься инженер на производстве.

Самые важные параметры, по которым отличают вентиляторы центробежные – технические характеристики. Главные показатели эффективности работы воздухоочистительного механизма – мощность и обороты двигателя, давление, производительность вентилятора, аэродинамические характеристики. У каждого типа устройства эти параметры отличаются.

Что такое осевой вентилятор?

Подобный тип встречается буквально на каждом шагу. На улице это – некоторые кондиционеры, в зданиях – вентиляция помещений, и даже за компьютером он нас настигает – в виде системы охлаждения процессора или видеокарты. Иначе такие вентиляторы могут называться аксиальными.

Без подобного устройства в современной жизни очень трудно обойтись – система охлаждения необходима многим приспособлениям и производствам, а человек не может дышать спёртым воздухом. И осевой вентилятор, как самый распространённый, справляется со своей миссией на ура. Но что это такое? Это устройство, состоящее из крутящейся оси и насаженных на него лопастей. Эти лопасти перемещают воздух вокруг их собственной оси.

Рейтинг производителей

Среди большого количества производителей, выпускающих электровентиляторы, можно отметить следующих с наиболее качественной продукцией:

  1. Vitek — российская компания, уже более двух десятков лет выпускающая различную технику хорошего качества. В их ассортименте бытовая техника для дома и автомобилей, устройства для нормализации микроклимата;
  2. Polaris — международный холдинг, производящий тепловое оборудование, некоторые предметы быта, водонагреватели, кондиционеры, вентиляторы;
  3. Maxwell — дочерняя компания российского холдинга Golder Electronics. Бытовая техника изготавливается по китайским современным технологиям, однако качество довольно неплохое, особенно для бюджетных моделей;
  4. Rolsen — также российская компания, работающая с 1994 года. Ассортимент вначале состоял из пылесосов, блендеров, пароувлажнителей. После признания их большим количеством потребителей, компания расширила свой ассортимент. Сейчас они производят различные виды бытовой техники, в том числе климатические устройства;
  5. KITFORT — производитель, настроенный на нужды потребительского рынка. Это компания, основными ценностями имеющая производство и предоставление выгодных условий на приобретение вентиляторов;
  6. Vitesse — эта французская компания вначале своей деятельности производила посуду из качественной нержавеющей стали, затем расширила производство. В отличном качестве выпускаемых вентиляторов уже убедились несколько тысяч покупателей;
  7. BORK — немецкая компания, специализируется на производстве техники премиум класса. Знаменитое немецкое качество не дает усомниться в благоприятной покупке ни на минуту.

Назначение

Военный инженер Саблуков предложил к применению устройство, ставшее незаменимым в конвекции газа – воздушной смеси в больших объёмах.

Прямоугольные – от трёхсот на сто пятьдесят миллиметров, до пятисот на тысячу пятьсот миллиметров, что даёт возможность применения в промышленности. Ниже приведен список мест, где еще используются радиальные вентиляторы.

Другие области применения:

  1. Кухни, санитарные узлы, ванные комнаты.
  2. Вредное производство – для быстрого удаления и очищения грязного воздуха.
  3. В сельском хозяйстве: на животноводческих комплексах, птичниках, теплицах.
  4. Торговых центрах, автобазах — для удаления взрывоопасных смесей.

История вентиляции

Основная статья: Вентиляция

Отдельные приёмы организованной вентиляции закрытых помещений применялись ещё в древности. Вентиляция помещений до начала XIX века сводилась, как правило, к естественному проветриванию. Теорию естественного движения воздуха в каналах и трубах создал М. В. Ломоносов. В 1795 году В. X. Фрибе впервые изложил основные положения, определяющие интенсивность воздухообмена в отапливаемом помещении сквозь неплотности наружных ограждений, дверные проёмы и окна, положив этим начало учению о нейтральной зоне.

В начале XIX века получает развитие вентиляция с тепловым побуждением приточного и удаляемого из помещения воздуха. Отечественные учёные отмечали несовершенство такого рода побуждения и связанные с ним большие расходы теплоты. Академик Э. X. Ленд указывал, что полная вентиляция может быть достигнута только механическим способом.

С появлением центробежных вентиляторов технология вентиляции помещений быстро совершенствуется. Первый успешно работавший центробежный вентилятор был предложен в 1832 году А. А. Саблуковым. В 1835 году этот вентилятор был применён для проветривания Чагирского рудника на Алтае. Саблуков предложил его и для вентиляции помещений, трюмов кораблей, для ускорения сушки, испарения и так далее. Широкое распространение вентиляции с механическим побуждением движения воздуха началось с конца XIX века.

Используемые электродвигатели

Промышленная вытяжка улитка оснащается электродвигателями со взрывозащищенным исполнением, прочными корпусами и крышками. Чаще всего в качестве привода используются асинхронные механизмы, имеющие фиксированную частоту вращения. Такой агрегат быстро выходит на максимальные показатели производительности, отличается надежностью и долговечностью. К недостаткам асинхронных электродвигателей принято относить невозможность регулировки частоты вращения рабочего вала, что несколько ограничивает возможности использования такой техники.

Наличие у электродвигателя диммирования и автоматического блока управления позволяет регулировать скорость вращения, существенно расширяя функциональные возможности применения вентиляторов улитка. Недостатком использования таких двигателей с регулировкой скорости вращения является их высокая стоимость, а также снижение надежности агрегатов, у которых часто из строя выходит электроника, управляющая работой привода.

Источники

  • http://StanokGid.ru/osnastka/ventilyator-ulitka-svoimi-rukami.html
  • https://vozduhstroy.ru/vytyazhka/ventilyator-ulitka-svoimi-rukami.html
  • https://www.RoomKlimat.ru/section/5/64-tsentrobezhnye-ventilyatory/
  • https://TopVentilyaciya.ru/ventilyaciya/vytyazhka-ulitka.html
  • https://AeroClima.ru/dymoudalenie/ventilyator-ulitka/
  • https://ru-remont.com/kvartira/kuhnya/tehnika/krupnaya/vytyazhka/vidy/ulitka.html
  • https://spk-kovka.ru/stanki/ventilyacionnye-ulitki.html

Рабочее колесо радиального вентилятора

Это основной, максимально нагруженный узел вентилятора. именно рабочее колесо осуществляет передачу энергии от привода (электродвигателя) вентилятора, перемещаемому воздуху. Его величина определяет не только габариты, но и основные параметры машины, ее производительность и давление. Диаметр рабочего колеса всегда указывается в обозначении вентилятора.

Состоит из элементов:

  • ступица (втулка)
  • передний диск
  • задний диск
  • лопатки

По направлению вращения рабочего колеса радиальные вентиляторы подразделяются на :

— правого вращения — рабочее колесо которого вращается по часовой стрелке при виде со стороны всасывания

— левого вращения — рабочее колесо которого вращается против часовой стрелки при виде со стороны всасывания

В свою очередь, вентиляторы правого и левого вращения изготавливаются с определенными углами разворота корпуса, которые измеряются в градусах :

Таким образом, в наименовании радиальных вентиляторов всегда должна присутствовать информация о направлении вращении колеса и угле разворота корпуса, например :

Вентилятор ВЦ 14-46 №6,3 схема 1 (15кВт*1000об/мин) Пр90 — вентилятор правого вращения, угол разворота 90 градусов

Вентилятор ВР 132-30 №8 схема 5 (15кВт*1500об/мин, Nр.к.=1450об/мин) Лев270 — вентилятор левого вращения, угол разворота 270 градусов

Хотим отметить, что варианты вращения и разворота не влияют ни на стоимость радиальных вентиляторов, ни на их аэродинамические характеристики. При изменении вращений и углов разворота меняются только габаритные размеры вентилятора и пространственное положение нагнетающего патрубка, что облегчает монтаж и упрощает подключение вентиляторов к системам воздуховодов.

Возможно, вам будет интересна информация по другим вентиляторам :

Поделитесь в социальных сетях:FacebookTwitterВКонтакте
Напишите комментарий